Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Sci ; 307: 110899, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33902858

RESUMO

Corteva Agriscience™ ran a discovery research program to identify biotech leads for improving maize Agronomic Traits such as yield, drought tolerance, and nitrogen use efficiency. Arising from many discovery sources involving thousands of genes, this program generated over 3331 DNA cassette constructs involving a diverse set of circa 1671 genes, whose transformed maize events were field tested from 2000 to 2018 under managed environments designed to evaluate their potential for commercialization. We demonstrate that a subgroup of these transgenic events improved yield in field-grown elite maize breeding germplasm. A set of at least 22 validated gene leads are identified and described which represent diverse molecular and physiological functions. These leads illuminate sectors of biology that could guide crop improvement in maize and perhaps other crops. In this review and interpretation, we share some of our approaches and results, and key lessons learned in discovering and developing these maize Agronomic Traits leads.


Assuntos
Biotecnologia/métodos , Produtos Agrícolas/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Melhoramento Vegetal/métodos , Plantas Geneticamente Modificadas , Zea mays/genética , Fenótipo
2.
Plant Biotechnol J ; 18(11): 2304-2315, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32356392

RESUMO

The Zea Mays BIG GRAIN 1 HOMOLOG 1 (ZM-BG1H1) was ectopically expressed in maize. Elite commercial hybrid germplasm was yield tested in diverse field environment locations representing commercial models. Yield was measured in 101 tests across all 4 events, 26 locations over 2 years, for an average yield gain of 355 kg/ha (5.65 bu/ac) above control, with 83% tests broadly showing yield gains (range +2272 kg/ha to -1240 kg/ha), with seven tests gaining more than one metric ton per hectare. Plant and ear height were slightly elevated, and ear and tassel flowering time were delayed one day, but ASI was unchanged, and these traits did not correlate to yield gain. ZM-BG1H1 overexpression is associated with increased ear kernel row number and total ear kernel number and mass, but individual kernels trended slightly smaller and less dense. The ZM-BG1H1 protein is detected in the plasma membrane like rice OS-BG1. Five predominant native ZM-BG1H1 alleles exhibit little structural and expression variation compared to the large increased expression conferred by these ectopic alleles.


Assuntos
Oryza , Zea mays , Grão Comestível , Oryza/genética , Fenótipo , Zea mays/genética
3.
Plant Physiol ; 134(1): 246-54, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14657403

RESUMO

Invertase activity is thought to play a regulatory role during early kernel development by converting sucrose originating from source leaves into hexoses to support cell division in the endosperm and embryo. Invertases are regulated at the posttranslational level by small protein inhibitors, INVINHs. We found that in maize (Zea mays), an invertase inhibitor homolog (ZM-INVINH1) is expressed early in kernel development, between 4 and 7 d after pollination. Invertase activity is reduced in vitro in the presence of recombinant ZM-INVINH1, and inhibition is attenuated by pre-incubation with sucrose. The presence of a putative signal peptide, fractionation experiments, and ZM-INVINH1::green fluorescent protein fusion experiments indicate that the protein is exported to the apoplast. Moreover, association of ZM-INVINH1 with the glycoprotein fraction by concanavalin A chromatogaphy suggests that ZM-INVINH1 interacts with an apoplastic invertase during early kernel development. ZM-INVINH1 was localized to the embryo surrounding region by in situ analysis, suggesting that this region forms a boundary, compartmentalizing apoplast invertase activity to allow different embryo and endosperm developmental rates.


Assuntos
Zea mays/embriologia , Zea mays/metabolismo , beta-Frutofuranosidase/antagonistas & inibidores , Sequência de Aminoácidos , Sequência de Bases , DNA de Plantas/genética , Inibidores Enzimáticos/metabolismo , Expressão Gênica , Genes de Plantas , Dados de Sequência Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sementes/metabolismo , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...