Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(33): eadn0597, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39141739

RESUMO

Spiders produce nature's toughest fiber using renewable components at ambient temperatures and with water as solvent, making it highly interesting to replicate for the materials industry. Despite this, much remains to be understood about the bioprocessing and composition of spider silk fibers. Here, we identify 18 proteins that make up the spiders' strongest silk type, the major ampullate fiber. Single-cell RNA sequencing and spatial transcriptomics revealed that the secretory epithelium of the gland harbors six cell types. These cell types are confined to three distinct glandular zones that produce specific combinations of silk proteins. Image analysis of histological sections showed that the secretions from the three zones do not mix, and proteomics analysis revealed that these secretions form layers in the final fiber. Using a multi-omics approach, we provide substantial advancements in the understanding of the structure and function of the major ampullate silk gland as well as of the architecture and composition of the fiber it produces.


Assuntos
Genômica , Proteômica , Seda , Análise de Célula Única , Aranhas , Transcriptoma , Aranhas/metabolismo , Aranhas/genética , Animais , Seda/metabolismo , Seda/química , Seda/genética , Proteômica/métodos , Genômica/métodos , Análise de Célula Única/métodos , Perfilação da Expressão Gênica/métodos
2.
Genome Biol ; 25(1): 2, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166964

RESUMO

BACKGROUND: Formation of tissue-specific transcriptional programs underlies multicellular development, including dorsoventral (DV) patterning of the Drosophila embryo. This involves interactions between transcriptional enhancers and promoters in a chromatin context, but how the chromatin landscape influences transcription is not fully understood. RESULTS: Here we comprehensively resolve differential transcriptional and chromatin states during Drosophila DV patterning. We find that RNA Polymerase II pausing is established at DV promoters prior to zygotic genome activation (ZGA), that pausing persists irrespective of cell fate, but that release into productive elongation is tightly regulated and accompanied by tissue-specific P-TEFb recruitment. DV enhancers acquire distinct tissue-specific chromatin states through CBP-mediated histone acetylation that predict the transcriptional output of target genes, whereas promoter states are more tissue-invariant. Transcriptome-wide inference of burst kinetics in different cell types revealed that while DV genes are generally characterized by a high burst size, either burst size or frequency can differ between tissues. CONCLUSIONS: The data suggest that pausing is established by pioneer transcription factors prior to ZGA and that release from pausing is imparted by enhancer chromatin state to regulate bursting in a tissue-specific manner in the early embryo. Our results uncover how developmental patterning is orchestrated by tissue-specific bursts of transcription from Pol II primed promoters in response to enhancer regulatory cues.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , RNA Polimerase II/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Fatores de Transcrição/metabolismo , Cromatina/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA