Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroscientist ; : 10738584221138251, 2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36461773

RESUMO

Neuropathic pain is a debilitating form of pain arising from injury or disease of the nervous system that affects millions of people worldwide. Despite its prevalence, the underlying mechanisms of neuropathic pain are still not fully understood. Dendritic spines are small protrusions on the surface of neurons that play an important role in synaptic transmission. Recent studies have shown that dendritic spines reorganize in the superficial and deeper laminae of the spinal cord dorsal horn with the development of neuropathic pain in multiple models of disease or injury. Given the importance of dendritic spines in synaptic transmission, it is possible that studying dendritic spines could lead to new therapeutic approaches for managing intractable pain. In this review article, we highlight the emergent role of dendritic spines in neuropathic pain, as well as discuss the potential for studying dendritic spines for the development of new therapeutics.

2.
Sci Rep ; 11(1): 7838, 2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33837249

RESUMO

A major complication with spinal cord injury (SCI) is the development of spasticity, a clinical symptom of hyperexcitability within the spinal H-reflex pathway. We have previously demonstrated a common structural motif of dendritic spine dysgenesis associated with hyperexcitability disorders after injury or disease insults to the CNS. Here, we used an adeno-associated viral (AAV)-mediated Cre-Lox system to knockout Rac1 protein expression in motor neurons after SCI. Three weeks after AAV9-Cre delivery into the soleus/gastrocnemius of Rac1-"floxed" adult mice to retrogradely infect spinal alpha-motor neurons, we observed significant restoration of RDD and reduced H-reflex excitability in SCI animals. Additionally, viral-mediated Rac1 knockdown reduced presence of dendritic spine dysgenesis on motor neurons. In control SCI animals without Rac1 knockout, we continued to observe abnormal dendritic spine morphology associated with hyperexcitability disorder, including an increase in mature, mushroom dendritic spines, and an increase in overall spine length and spine head size. Taken together, our results demonstrate that viral-mediated disruption of Rac1 expression in ventral horn motor neurons can mitigate dendritic spine morphological correlates of neuronal hyperexcitability, and reverse hyperreflexia associated with spasticity after SCI. Finally, our findings provide evidence of a putative mechanistic relationship between motor neuron dendritic spine dysgenesis and SCI-induced spasticity.


Assuntos
Células do Corno Anterior/metabolismo , Depressão/metabolismo , Técnicas de Inativação de Genes/métodos , Reflexo H/genética , Neuropeptídeos/metabolismo , Traumatismos da Medula Espinal/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Espinhas Dendríticas/metabolismo , Dependovirus/genética , Depressão/genética , Modelos Animais de Doenças , Feminino , Locomoção/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Espasticidade Muscular/metabolismo , Plasticidade Neuronal/genética , Neuropeptídeos/genética , Traumatismos da Medula Espinal/genética , Proteínas rac1 de Ligação ao GTP/genética
3.
J Neurosci Methods ; 348: 108972, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33157146

RESUMO

BACKGROUND: The Neurodata Without Borders data standard (NWB) unifies diverse modalities of neurophysiology data in a single format. Integrating NWB with a database unleashes its full potential to promote collaboration, standardize analyses, capitalize on historical data, and ensures data integrity by maintaining process transparency. NWB database technology is the bedrock of analytical systems used by academic leaders including the Allen Institute and the International Brain Laboratory. Here we present the benefits of incorporating NWB design principles in a big data analytics application. NEW METHOD: Data standards and databases are the foundation of big data analytics. To demonstrate the benefits of using these systems together, we implemented NWB in Jupyter notebooks using DataJoint to streamline database operations. RESULTS: We demonstrate the utility of combining the NWB with DataJoint in a Jupyter-based electronic lab journal. We convert open-field behavioral data (using X, Y coordinates) to NWB format and process it with a DataJoint pipeline. Additional notebooks demonstrate working NWB files, data sharing, combining data from diverse sources, and retrospective analyses with data query filtering techniques. COMPARISON WITH EXISTING METHODS: NWB describes how to structure and store neurophysiology data and is streamlined for research settings. In contrast to other data standards, combining NWB with DataJoint's database interface can dramatically increase data analytical capabilities. CONCLUSIONS: The joint use of NWB with DataJoint transforms traditional laboratory datasets and workflows. Our Jupyter notebooks showcase the analytical and collaborative advantages of adopting big data analytics and can be tailored to other modalities by researchers interested in evaluating NWB.


Assuntos
Disseminação de Informação , Software , Ciência de Dados , Estudos Retrospectivos , Fluxo de Trabalho
4.
Neurosci Insights ; 15: 2633105520951164, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32864619

RESUMO

Dendritic spines are microscopic protrusions on neurons that house the postsynaptic machinery necessary for neurotransmission between neurons. As such, dendritic spine structure is intimately linked with synaptic function. In pathology, dendritic spine behavior and its contribution to disease are not firmly understood. It is well known that dendritic spines are highly dynamic in vivo. In our recent publication, we used an intravital imaging approach, which permitted us to repeatedly visualize the same neurons located in lamina II, a nociceptive processing region of the spinal cord. Using this imaging platform, we analyzed the intravital dynamics of dendritic spine structure before and after nerve injury-induced pain. This effort revealed a time-dependent relationship between the progressive increase in pain outcome, and a switch in the steady-state fluctuations of dendritic spine structure. Collectively, our in vivo study demonstrates how injury that leads to abnormal pain may also contribute to synapse-associated structural remodeling in nociceptive regions of the spinal cord dorsal horn. By combining our live-imaging approach with measures of neuronal activity, such as with the use of calcium or other voltage-sensitive dyes, we expect to gain a more complete picture of the relationship between dendritic spine structure and nociceptive physiology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...