Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 7(5): 3963-3977, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35155892

RESUMO

Solar cells based on organic compounds are a proven emergent alternative to conventional electrical energy generation. Here, we provide a computational study of power conversion efficiency optimization of boron dipyrromethene (BODIPY) derivatives by means of their associated open-circuit voltage, short-circuit density, and fill factor. In doing so, we compute for the derivatives' geometrical structures, energy levels of frontier molecular orbitals, absorption spectra, light collection efficiencies, and exciton binding energies via density functional theory (DFT) and time-dependent (TD)-DFT calculations. We fully characterize four D-π-A (BODIPY) molecular systems of high efficiency and improved J sc that are well suited for integration into bulk heterojunction (BHJ) organic solar cells as electron-donor materials in the active layer. Our results are twofold: we found that molecular complexes with a structural isoxazoline ring exhibit a higher power conversion efficiency (PCE), a useful result for improving the BHJ current, and, on the other hand, by considering the molecular systems as electron-acceptor materials, with P3HT as the electron donor in the active layer, we found a high PCE compound favorability with a pyrrolidine ring in its structure, in contrast to the molecular systems built with an isoxazoline ring. The theoretical characterization of the electronic properties of the BODIPY derivatives provided here, computed with a combination of ab initio methods and quantum models, can be readily applied to other sets of molecular complexes to hierarchize optimal power conversion efficiency.

2.
J Phys Chem A ; 125(12): 2518-2531, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33754739

RESUMO

Photoinduced electron transfer in multichromophore molecular systems is defined by a critical interplay between their core unit configuration (donor, molecular bridge, and acceptor) and their system-solvent coupling; these lead to energy and charge transport processes that are key in the design of molecular antennas for efficient light harvesting and organic photovoltaics. Here, we quantify the ultrafast non-Markovian dissipative dynamics of electron transfer in D-π-A molecular photosystems comprising 1,3,5,7-tetramethyl-8-phenyl-4,4-difluoroboradiazaindacene (BODIPY), Zn-porphyrin, fulleropyrrolidine, and fulleroisoxazoline. We find that the stabilization energy of the charge transfer states exhibits a significant variation for different polar (methanol, tetrahydrofuran (THF)) and nonpolar (toluene) environments and determine such sensitivity according to the molecular structure and the electron-vibration couplings that arise at room temperature. For the considered donor-acceptor (D-A) dyads, we show that the stronger the molecule-solvent coupling, the larger the electron transfer rates, regardless of the dyads' electronic coherence properties. We find such coupling strengths to be the largest (lowest) for methanol (toluene), with an electron transfer rate difference of 2 orders of magnitude between the polar and nonpolar solvents. For the considered donor-bridge-acceptor (D-B-A) triads, the molecular bridge introduces an intermediate state that allows the realization of Λ or cascaded-type energy mechanisms. We show that the latter configuration, obtained for BDP-ZnP-[PyrC60] in methanol, exhibits the highest transfer rate of all of the computed triads. Remarkably, and in contrast with the dyads, we show that the larger charge transfer rates are obtained for triads that exhibit prolonged electron coherence and population oscillations.

3.
Sci Rep ; 10(1): 13083, 2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32753626

RESUMO

Emergent technologies that make use of novel materials and quantum properties of light states are at the forefront in the race for the physical implementation, encoding and transmission of information. Photonic crystals (PCs) enter this paradigm with optical materials that allow the control of light propagation and can be used for optical communication, and photonics and electronics integration, making use of materials ranging from semiconductors, to metals, metamaterials, and topological insulators, to mention but a few. Here, we show how designer superconductor materials integrated into PCs fabrication allow for an extraordinary reduction of electromagnetic waves damping, making possible their optimal propagation and tuning through the structure, below critical superconductor temperature. We experimentally demonstrate, for the first time, a successful integration of ferroelectric and superconductor materials into a one-dimensional (1D) PC composed of [Formula: see text] bilayers that work in the whole visible spectrum, and below (and above) critical superconductor temperature [Formula: see text]. Theoretical calculations support, for different number of bilayers N, the effectiveness of the produced 1D PCs and may pave the way for novel optoelectronics integration and information processing in the visible spectrum, while preserving their electric and optical properties.

4.
Phys Chem Chem Phys ; 21(23): 12640-12648, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31155625

RESUMO

Understanding electron transfer in organic molecules is of great interest in quantum materials for light harvesting, energy conversion and integration of molecules into solar cells. This, however, poses the challenge of designing specific optimal molecular structure for which the processes of ultrafast quantum coherence and electron transport are not so well understood. In this work, we investigate subpicosecond time scale quantum dynamics and electron transfer in an efficient electron acceptor rhodanine chromophoric complex. We consider an open quantum system approach to model the complex-solvent interaction, and compute the crossover from weak to strong dissipation on the reduced system dynamics for both a polar (methanol) and a non polar solvent (toluene). We show that the electron transfer rates are enhanced in the strong chromophore-solvent coupling regime, being the highest transfer rates those found at room temperature. Even though the computed dynamics are highly non-Markovian, and they may exhibit a quantum character up to hundreds of femtoseconds, we show that quantum coherence does not necessarily optimise the electron transfer in the chromophore.

5.
J Phys Chem A ; 122(43): 8469-8476, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30350632

RESUMO

Push-pull functional compounds consisting of dicyanorhodanine derivatives have attracted a lot of interest because their optical, electronic, and charge transport properties make them useful as building blocks for organic photovoltaic implementations. The analysis of the frontier molecular orbitals shows that the vertical transitions of electronic absorption are characterized as intramolecular charge transfer; furthermore, we show that the analyzed compounds exhibit bathochromic displacements when comparing the presence (or absence) of solvent as an interacting medium. In comparison with materials defined by their energy of reorganization of electrons (holes) as electron (hole) transporters, we find a transport hierarchy whereby the molecule ( Z)-2-(1,1-dicyanomethylene)-5-[(4-dimethylamino)benzylidene]-1,3-thiazol-4 is better at transporting holes than molecule ( Z)-2-(1,1-dicyanomethylene)-5-(tetrathiafulvalene-2-ylidene)-1,3-thiazol-4.

6.
Sci Rep ; 7: 44730, 2017 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-28327567

RESUMO

Game theory is a well established branch of mathematics whose formalism has a vast range of applications from the social sciences, biology, to economics. Motivated by quantum information science, there has been a leap in the formulation of novel game strategies that lead to new (quantum Nash) equilibrium points whereby players in some classical games are always outperformed if sharing and processing joint information ruled by the laws of quantum physics is allowed. We show that, for a bipartite non zero-sum game, input local quantum correlations, and separable states in particular, suffice to achieve an advantage over any strategy that uses classical resources, thus dispensing with quantum nonlocality, entanglement, or even discord between the players' input states. This highlights the remarkable key role played by pure quantum coherence at powering some protocols. Finally, we propose an experiment that uses separable states and basic photon interferometry to demonstrate the locally-correlated quantum advantage.

7.
Sci Rep ; 4: 7443, 2014 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-25517102

RESUMO

Most works on open quantum systems generally focus on the reduced physical system by tracing out the environment degrees of freedom. Here we show that the qubit distributions with the environment are essential for a thorough analysis, and demonstrate that the way that quantum correlations are distributed in a quantum register is constrained by the way in which each subsystem gets correlated with the environment. For a two-qubit system coupled to a common dissipative environment E, we show how to optimise interqubit correlations and entanglement via a quantification of the qubit-environment information flow, in a process that, perhaps surprisingly, does not rely on the knowledge of the state of the environment. To illustrate our findings, we consider an optically-driven bipartite interacting qubit AB system under the action of E. By tailoring the light-matter interaction, a relationship between the qubits early stage disentanglement and the qubit-environment entanglement distribution is found. We also show that, under suitable initial conditions, the qubits energy asymmetry allows the identification of physical scenarios whereby qubit-qubit entanglement minima coincide with the extrema of the AE and BE entanglement oscillations.

8.
Phys Rev Lett ; 93(25): 250501, 2004 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-15697883

RESUMO

We propose a method for quantum information processing using molecules coupled to an external laser field. This utilizes molecular interactions, control of the external field, and an effective energy shift of the doubly excited state of two coupled molecules. Such a level shift has been seen in the two-photon resonance experiments recently reported by Hettich et al. Here we show that this can be explained in terms of the QED Lamb shift. We quantify the performance of the proposed quantum logic gates in the presence of dissipative mechanisms. The unitary transformations required for performing one- and two-qubit operations can be implemented with present day molecular technology. The proposed techniques can also be applied to coupled quantum dot and biomolecular systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...