Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22270718

RESUMO

The association between COVID-19 symptoms and antibody responses against SARS-CoV-2 is poorly characterized. We analyzed antibody levels in individuals with known SARS-CoV-2 infection to identify potential antibody-symptom associations. Convalescent plasma from 216 SARS-CoV-2 RNA+ individuals with symptomatology information were tested for the presence of IgG to the spike S1 subunit (Euroimmun ELISA), IgG to receptor binding domain (RBD, CoronaCHEK rapid test), and for IgG, IgA, and IgM to nucleocapsid (N, Bio-Rad ELISA). Logistic regression was used to estimate the odds of having a COVID-19 symptom from the antibody response, adjusting for sex and age. Cough strongly associated with antibodies against S1 (adjusted odds ratio [aOR]= 5.33; 95% CI from 1.51 to 18.86) and RBD (aOR=4.36; CI 1.49, 12.78). In contrast, sore throat significantly associated with the absence of antibodies to S1 and N (aOR=0.25; CI 0.08, 0.80 and aOR=0.31; 0.11, 0.91). Similarly, lack of symptoms associated with the absence of antibodies to N and RBD (aOR=0.16; CI 0.03, 0.97 and aOR=0.16; CI 0.03, 1.01). Cough appeared to be correlated with a seropositive result, suggesting that SARS-CoV-2 infected individuals exhibiting lower respiratory symptoms generate a robust antibody response. Conversely, those without symptoms or limited to a sore throat while infected with SARS-CoV-2 were likely to lack a detectable antibody response. These findings strongly support the notion that severity of infection correlates with robust antibody response.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21264968

RESUMO

BackgroundEmergency Departments (EDs) can serve as surveillance sites for infectious diseases. Our purpose was to determine the burden of SARS-CoV-2 infection and prevalence of vaccination against COVID-19 among patients attending an urban ED in Baltimore City. MethodsUsing 1914 samples of known exposure status, we developed an algorithm to differentiate previously infected, vaccinated, and unexposed individuals using a combination of antibody assays. We applied this testing algorithm to 4360 samples ED patients obtained in the springs of 2020 and 2021. Using multinomial logistic regression, we determined factors associated with infection and vaccination. ResultsFor the algorithm, sensitivity and specificity for identifying vaccinated individuals was 100% and 99%, respectively, and 84% and 100% for naturally infected individuals. Among the ED subjects, seroprevalence to SARS-CoV-2 increased from 2% to 24% between April 2020 and March 2021. Vaccination prevalence rose to 11% by mid-March 2021. Marked differences in burden of disease and vaccination coverage were seen by sex, race, and ethnicity. Hispanic patients, though 7% of the study population, had the highest relative burden of disease (17% of total infections) but similar vaccination rates. Women and White individuals were more likely to be vaccinated than men or Black individuals (adjusted odds ratios [aOR] 1.35 [95% CI: 1.02, 1.80] and aOR 2.26 [95% CI: 1.67, 3.07], respectively). ConclusionsIndividuals previously infected with SARS-CoV-2 can be differentiated from vaccinated individuals using a serologic testing algorithm. SARS-CoV-2 exposure and vaccination uptake frequencies reflect gender, race and ethnic health disparities in this urban context. SummaryUsing an antibody testing algorithm, we distinguished between immune responses from SARS-CoV-2-infected and vaccinated individuals. When applied to blood samples from an emergency department in Baltimore, disparities in disease burden and vaccine uptake by sex, race, and ethnicity were identified.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21259671

RESUMO

Current tests for SARS-CoV-2 antibodies (IgG, IgM, IgA) cannot differentiate recent and past infections. We describe a point of care, lateral flow assay for SARS-CoV-2 dIgA based on the highly selective binding of dIgA to a chimeric form of secretory component (CSC), that distinguishes dIgA from monomeric IgA. Detection of specific dIgA uses a complex of biotinylated SARS-CoV-2 receptor binding domain and streptavidin-colloidal gold. SARS-CoV-2-specific dIgA was measured both in 112 cross-sectional samples and a longitudinal panel of 362 plasma samples from 45 patients with PCR-confirmed SARS-CoV-2 infection, and 193 discrete pre-COVID-19 or PCR-negative patient samples. The assay demonstrated 100% sensitivity from 11 days post-symptom onset, and a specificity of 98.2%. With an estimated half-life of 6.3 days, dIgA provides a unique biomarker for the detection of recent SARS-CoV-2 infections with potential to enhance diagnosis and management of COVID-19 at point-of-care.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21255284

RESUMO

BackgroundWe assessed the performance of CoronaCHEK lateral flow assay on samples from Uganda and Baltimore to determine the impact of geographic origin on assay performance. MethodsSerum samples from SARS-CoV-2 PCR+ individuals (Uganda: 78 samples from 78 individuals and Baltimore: 266 samples from 38 individuals) and from pre-pandemic individuals (Uganda 1077 and Baltimore 532) were evaluated. Prevalence ratios (PR) were calculated to identify factors associated with a false-positive test. ResultsAfter first positive PCR in Ugandan samples the sensitivity was: 45% (95% CI 24,68) at 0-7 days; 79% (95%CI 64,91) 8-14 days; and 76% (95%CI 50,93) >15 days. In samples from Baltimore, sensitivity was: 39% (95% CI 30, 49) 0-7 days; 86% (95% CI 79,92) 8-14 days; and 100% (95% CI 89,100) 15 days post positive PCR. The specificity of 96.5% (95% CI 97.5,95.2) in Ugandan samples was significantly lower than samples from Baltimore 99.3% (95% CI 98.1,99.8), p<0.01. In Ugandan samples, individuals with a false positive result were more likely to be male (PR 2.04, 95% CI 1.03,3.69) or individuals who had a fever more than a month prior to sample acquisition (PR 2.87, 95% CI 1.12,7.35). ConclusionsSensitivity of the CoronaCHEK was similar in samples from Uganda and Baltimore. The specificity was significantly lower in Ugandan samples than in Baltimore samples. False positive results in Ugandan samples appear to correlate with a recent history of a febrile illness, potentially indicative of a cross-reactive immune response in individuals from East Africa.

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20184788

RESUMO

Accurate serological assays to detect antibodies to SARS-CoV-2 are needed to characterize the epidemiology of SARS-CoV-2 infection and identify potential candidates for COVID-19 convalescent plasma (CCP) donation. This study compared the performance of commercial enzyme immunoassays (EIAs) to detect IgG or total antibodies to SARS-CoV-2 and neutralizing antibodies (nAb). The diagnostic accuracy of five commercially available EIAs (Abbott, Euroimmun, EDI, ImmunoDiagnostics, and Roche) to detect IgG or total antibodies to SARS-CoV-2 was evaluated from cross-sectional samples of potential CCP donors that had prior molecular confirmation of SARS-CoV-2 infection for sensitivity (n=214) and pre-pandemic emergency department patients for specificity (n=1,102). Of the 214 potential CCP donors, all were sampled >14 days since symptom onset and only a minority had been hospitalized due to COVID-19 (n=16 [7.5%]); 140 potential CCP donors were tested by all five EIAs and a microneutralization assay. When performed according to the manufacturers protocol to detect IgG or total antibodies to SARS-CoV-2, the sensitivity of each EIA ranged from 76.4% to 93.9%, and the specificity of each EIA ranged from 87.0% to 99.6%. Using a nAb titer cutoff of [≥]160 as the reference positive test (n=140 CCP donors), the empirical area under receiver operating curve of each EIA ranged from 0.66 (Roche) to 0.90 (Euroimmun). Commercial EIAs with high diagnostic accuracy to detect SARS-CoV-2 antibodies did not necessarily have high diagnostic accuracy to detect high nAbs. Some but not all commercial EIAs may be useful in the identification of individuals with high nAbs in convalescent individuals.

6.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20166041

RESUMO

BackgroundRapid point-of-care tests (POCTs) for SARS-CoV-2-specific antibodies vary in performance. A critical need exists to perform head-to-head comparison of these assays. MethodsPerformance of fifteen different lateral flow POCTs for the detection of SARS-CoV-2-specific antibodies was performed on a well characterized set of 100 samples. Of these, 40 samples from known SARS-CoV-2-infected, convalescent individuals (average of 45 days post symptom onset) were used to assess sensitivity. Sixty samples from the pre-pandemic era (negative control), that were known to have been infected with other respiratory viruses (rhinoviruses A, B, C and/or coronavirus 229E, HKU1, NL63 OC43) were used to assess specificity. The timing of seroconversion was assessed on five POCTs on a panel of 272 longitudinal samples from 47 patients of known time since symptom onset. ResultsFor the assays that were evaluated, the sensitivity and specificity for any reactive band ranged from 55%-97% and 78%-100%, respectively. When assessing the performance of the IgM and the IgG bands alone, sensitivity and specificity ranged from 0%-88% and 80%-100% for IgM and 25%-95% and 90%-100% for IgG. Longitudinal testing revealed that median time post symptom onset to a positive result was 7 days (IQR 5.4, 9.8) for IgM and 8.2 days (IQR 6.3 to 11.3). ConclusionThe testing performance varied widely among POCTs with most variation related to the sensitivity of the assays. The IgM band was most likely to misclassify pre-pandemic samples. The appearance of IgM and IgG bands occurred almost simultaneously.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...