Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 9(27): 9299-9304, 2017 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-28675210

RESUMO

The nitrogen-vacancy (NV) centre in diamond is a unique optical defect that is used in many applications today and methods to enhance its fluorescence brightness are highly sought after. We observed experimentally an enhancement of the NV quantum yield by up to 7% in bulk diamond caused by an external magnetic field relative to the field-free case. This observation is rationalised phenomenologically in terms of a magnetic field dependence of the NV excited state triplet-to-singlet transition rate. The theoretical model is in good qualitative agreement with the experimental results at low excitation intensities. Our results significantly contribute to our fundamental understanding of the photophysical properties of the NV defect in diamond.

2.
Opt Lett ; 42(7): 1297-1300, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28362753

RESUMO

Nanostructured and bulk silicon carbide (SiC) has recently emerged as a novel platform for quantum nanophotonics due to its harboring of paramagnetic color centers, having immediate applications as a single photon source and spin optical probes. Here, using ultra-short pulsed laser ablation, we fabricated from electron irradiated bulk 4H-SiC, 40-50 nm diameter SiC nanoparticles, fluorescent at 850-950 nm. This photoluminescence is attributed to the silicon vacancy color centers. We demonstrate that the original silicon vacancy color centers from the target sample were retained in the final nanoparticles solution, exhibiting excellent colloidal stability in water over several months. Our work is relevant for quantum nanophotonics, magnetic sensing, and biomedical imaging applications.


Assuntos
Compostos Inorgânicos de Carbono/química , Lasers , Microscopia de Fluorescência/métodos , Nanopartículas/química , Compostos de Silício/química , Cor
3.
Nanoscale ; 9(2): 497-502, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27942675

RESUMO

Bright and photostable fluorescence from nitrogen-vacancy (NV) centers is demonstrated in unprocessed detonation nanodiamond particle aggregates. The optical properties of these particles is analyzed using confocal fluorescence microscopy and spectroscopy, time resolved fluorescence decay measurements, and optically detected magnetic resonance experiments. Two particle populations with distinct optical properties are identified and compared to high-pressure high-temperature (HPHT) fluorescent nanodiamonds. We find that the brightness of one detonation nanodiamond particle population is on the same order as that of highly processed fluorescent 100 nm HPHT nanodiamonds. Our results may open the path to a simple and up-scalable route for the production of fluorescent NV nanodiamonds for use in bioimaging applications.

4.
Klin Padiatr ; 218(1): 20-1, 2006.
Artigo em Alemão | MEDLINE | ID: mdl-16432770
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...