Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Comput Chem ; 45(15): 1247-1253, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38348951

RESUMO

This work reports an efficient density-fitting implementation of the density-based basis-set correction (DBBSC) method in the MOLPRO software. This method consists in correcting the energy calculated by a wave-function method with a given basis set by an adapted basis-set correction density functional incorporating the short-range electron correlation effects missing in the basis set, resulting in an accelerated convergence to the complete-basis-set limit. Different basis-set correction density-functional approximations are explored and the complementary-auxiliary-basis-set single-excitation correction is added. The method is tested on a benchmark set of reaction energies at the second-order Møller-Plesset (MP2) level and a comparison with the explicitly correlated MP2-F12 method is provided. The results show that the DBBSC method greatly accelerates the basis convergence of MP2 reaction energies, without reaching the accuracy of the MP2-F12 method but with a lower computational cost.

3.
SLAS Discov ; 29(2): 100137, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38128829

RESUMO

Aberrant protein aggregation is a pathological cellular hallmark of many neurodegenerative diseases, such as Alzheimer's disease (AD) and frontotemporal dementia (FTD), where the tau protein is aggregating, forming neurofibrillary tangles (NFTs), and propagating from neuron to neuron. These processes have been linked to disease progression and a decline in cognitive function. Various therapeutic approaches aim at the prevention or reduction of tau aggregates in neurons. Human induced pluripotent stem cells (hiPSCs) are a very valuable tool in neuroscience discovery, as they offer access to potentially unlimited amounts of cell types that are affected in disease, including cortical neurons, for in vitro studies. We have generated an in vitro model for tau aggregation that uses hiPSC - derived neurons expressing an aggregation prone, fluorescently tagged version of the human tau protein after lentiviral transduction. Upon addition of tau seeds in the form of recombinant sonicated paired helical filaments (sPHFs), the neurons show robust, disease-like aggregation of the tau protein. The model was developed as a plate-based high content screening assay coupled with an image analysis algorithm to evaluate the impact of small molecules or genetic perturbations on tau. We show that the assay can be used to evaluate small molecules or screen targeted compound libraries. Using siRNA-based gene knockdown, genes of interest can be evaluated, and we could show that a targeted gene library can be screened, by screening nearly 100 deubiquitinating enzymes (DUBs) in that assay. The assay uses an imaging-based readout, a relatively short timeline, quantifies the extent of tau aggregation, and also allows the assessment of cell viability. Furthermore, it can be easily adapted to different hiPSC lines or neuronal subtypes. Taken together, this complex and highly relevant approach can be routinely applied on a weekly basis in the screening funnels of several projects and generates data with a turnaround time of approximately five weeks.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Humanos , Proteínas tau/genética , Proteínas tau/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Doença de Alzheimer/metabolismo , Neurônios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA