Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-14565287

RESUMO

Novel cyclic and acyclic analogues of dTMP and AZTMP were synthesized from the corresponding cycloSal-phosphotriesters. This method yielded the nucleotides in good yields with a simple work-up. Investigation of the substrate properties of the modified nucleotides towards TmpK showed, that they are very poor substrates for this key enzyme in the bioactivation of AZT.


Assuntos
Núcleosídeo-Fosfato Quinase/antagonistas & inibidores , Nucleotídeos/síntese química , Nucleotídeos/farmacocinética , Inibidores da Transcriptase Reversa/síntese química , Timidina Monofosfato/síntese química , Zidovudina/análogos & derivados , Zidovudina/farmacocinética , Biotransformação , Didesoxinucleotídeos , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Humanos , Indicadores e Reagentes , Cinética , Nucleotídeos/química , Inibidores da Transcriptase Reversa/farmacocinética , Timidina Monofosfato/farmacocinética , Nucleotídeos de Timina/farmacocinética
2.
Cell Mol Life Sci ; 59(10): 1598-606, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12475169

RESUMO

Proteins of thermophilic organisms are adapted to remain well structured and functional at elevated temperatures. Nevertheless like their 'cousins' that reside at medium temperatures, they require the assistance of molecular chaperones to fold properly and prevent aggregation. This review compares structural and functional properties of the DnaK/ClpB systems of Thermus thermophilus and, mainly, Escherichia coli (DnaK(Tth) and DnaK(Eco)). Many elemental properties of these systems remain conserved. However, in addition to a general increase of the thermal stability of its components, the DnaK(Tth) system shows profound differences in its regulation, and genetic as well as oligomeric organization. Whether these differences are unique or represent general strategies of adaptation to life at elevated temperatures remains to be clarified.


Assuntos
Proteínas de Escherichia coli , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico/genética , Chaperonas Moleculares/genética , Thermus thermophilus/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Thermus thermophilus/metabolismo
3.
J Mol Biol ; 314(1): 167-78, 2001 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-11724541

RESUMO

Hsp70 proteins like DnaK bind unfolded polypeptides in a nucleotide-dependent manner. The switch from high-affinity ADP-state to low- affinity ATP-state with concomitant substrate release is accelerated significantly by GrpE proteins. GrpE thus fulfils an important role in regulation of the chaperone cycle. Here, we analysed the thermal stability of GrpE from Thermus thermophilus using differential scanning calorimetry and CD-spectroscopy. The protein exhibits unusual unfolding characteristics with two observable thermal transitions. The first transition is CD-spectroscopically silent with a transition midpoint at 90 degrees C. The second transition, mainly constituting the CD-signal, ranges between 100 and 105 degrees C depending on the GrpE(Tth) concentration, according to the model N(2) <==> I(2) <==> 2U. Using a C-terminally truncated version of GrpE(Tth) it was possible to assign the second thermal transition to the dimerisation of GrpE(Tth), while the first transition represents the completely reversible unfolding of the globular C-terminal domain. The unfolding of this domain is accompanied by a distinct decrease in nucleotide exchange rates and impaired binding to DnaK(Tth). Under heat shock conditions, the DnaK-ADP-protein-substrate complex is thus stabilised by a reversibly inactivated GrpE-protein that refolds under permissive conditions. In combination with studies on GrpE from Escherichia coli presented recently by Christen and co-workers, it thus appears that the general role of GrpE is to function as a thermosensor that modulates nucleotide exchange rates in a temperature-dependent manner to prevent substrate dissociation at non-permissive conditions.


Assuntos
Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico , Dobramento de Proteína , Thermus thermophilus/química , Proteínas de Bactérias/genética , Varredura Diferencial de Calorimetria , Dicroísmo Circular , Dimerização , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Guanidina/farmacologia , Proteínas de Choque Térmico HSP40 , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/genética , Cinética , Modelos Biológicos , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína/efeitos dos fármacos , Deleção de Sequência , Espectrometria de Fluorescência , Temperatura , Termodinâmica , Thermus thermophilus/genética
4.
Nat Struct Biol ; 8(5): 427-32, 2001 May.
Artigo em Inglês | MEDLINE | ID: mdl-11323718

RESUMO

The Hsp70 chaperone activity in protein folding is regulated by ATP-controlled cycles of substrate binding and release. Nucleotide exchange plays a key role in these cycles by triggering substrate release. Structural searches of Hsp70 homologs revealed three structural elements within the ATPase domain: two salt bridges and an exposed loop. Mutational analysis showed that these elements control the dissociation of nucleotides, the interaction with exchange factors and chaperone activity. Sequence variations in the three elements classify the Hsp70 family members into three subfamilies, DnaK proteins, HscA proteins and Hsc70 proteins. These subfamilies show strong differences in nucleotide dissociation and interaction with the exchange factors GrpE and Bag-1.


Assuntos
Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Escherichia coli , Escherichia coli , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA , Escherichia coli/química , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Choque Térmico HSC70 , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Humanos , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida/genética , Ligação Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência , Eletricidade Estática , Especificidade por Substrato , Fatores de Transcrição
5.
J Mol Biol ; 306(4): 889-99, 2001 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-11243796

RESUMO

ClpB belongs to the Hsp100 family and assists de-aggregation of protein aggregates by DnaK chaperone systems. It contains two Walker consensus sequences (or P-Loops) that indicate potential nucleotide binding domains (NBD). Both domains appear to be essential for chaperoning function, since mutation of the conserved lysine residue of the GX(4)GKT consensus sequences to glutamine (K204Q and K601Q) abolishes its properties to accelerate renaturation of aggregated firefly luciferase. The underlying biochemical reason for this malfunction appears not to be a dramatically reduced ATPase activity of either P-loop per se but rather changed properties of co-operativity of ATPase activity connected to oligomerization properties to form productive oligomers. This view is corroborated by data that show that structural stability (as judged by CD spectroscopy) or ATPase activity at single turnover conditions (at low ATP concentrations) are not significantly affected by these mutations. In addition nucleotide binding properties of wild-type protein and mutants (as judged by binding studies with fluorescent nucleotide analogues and competitive displacement titrations) do not differ dramatically. However, the general pattern of formation of stable, defined oligomers formed as a function of salt concentration and nucleotides and more importantly, cooperativity of ATPase activity at high ATP concentrations is dramatically changed with the two P-loop mutants described.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Escherichia coli , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Thermus thermophilus/metabolismo , Difosfato de Adenosina/análogos & derivados , Difosfato de Adenosina/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Regulação Alostérica , Sítio Alostérico , Substituição de Aminoácidos , Proteínas de Bactérias/metabolismo , Endopeptidase Clp , Ativação Enzimática , Proteínas de Choque Térmico HSP40 , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Temperatura Alta , Hidrólise , Cinética , Luciferases/química , Luciferases/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Mutação , Concentração Osmolar , Ligação Proteica , Desnaturação Proteica , Renaturação Proteica , Estrutura Terciária de Proteína , Espectrometria de Fluorescência , Termodinâmica , Thermus thermophilus/enzimologia , Thermus thermophilus/genética , ortoaminobenzoatos/metabolismo
6.
J Mol Biol ; 305(5): 1173-83, 2001 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-11162122

RESUMO

The nucleotide binding and release cycle of the molecular chaperone DnaK is regulated by the accessory proteins GrpE and DnaJ, also called co-chaperones. The concerted action of the nucleotide exchange factor GrpE and the ATPase-stimulating factor DnaJ determines the ratio of the two nucleotide states of DnaK, which differ in their mode of interaction with unfolded proteins. In the Escherichia coli system, the stimulation by these two antagonists is comparable in magnitude, resulting in a balance of the two nucleotide states of DnaK(Eco) in the absence and the presence of co-chaperones. The regulation of the DnaK chaperone system from Thermus thermophilus is apparently substantially different. Here, DnaJ does not stimulate the DnaK-mediated ATP hydrolysis and thus does not appear to act as an antagonist of the nucleotide exchange factor GrpE(Tth). This raises the question of whether T. thermophilus GrpE stimulates nucleotide exchange to a smaller degree as compared to the E. coli system and how the corresponding rates relate to intrinsic ATPase and ATP binding as well as luciferase refolding kinetics of T. thermophilus DnaK. We determined dissociation constants as well as kinetic constants that describe the interactions between the T. thermophilus molecular chaperone DnaK, its nucleotide exchange factor GrpE and the fluorescent ADP analogue N8-(4-N'-methylanthraniloylaminobutyl)-8-aminoadenosine-5'-diphosphate by isothermal equilibrium titration calorimetry and stopped-flow kinetic experiments and investigated the influence of T. thermophilus DnaJ on the DnaK nucleotide cycle. The interaction of GrpE with the DnaK.ADP complex versus nucleotide-free DnaK can be described by a simple equilibrium system, where GrpE reduces the affinity of DnaK for ADP by a factor of about 10. Kinetic experiments indicate that the maximal acceleration of nucleotide release by GrpE is 80,000-fold at a saturating GrpE concentration. Our experiments show that in T. thermophilus, although the thermophilic DnaK system displays no stimulation of the DnaK-ATPase activity by DnaJ, nucleotide exchange is still efficiently stimulated by GrpE. This indicates that two counteracting factors are not absolutely necessary to maintain a functional and regulated chaperone cycle. This conclusion is corroborated by data that show that the slower ATPase cycle of the DnaK system as well as of heterologous T. thermophilus DnaK/E. coli DnaK systems is directly reflected in altered refolding kinetics of firefly luciferase but not necessarily in refolding yields.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Thermus thermophilus/enzimologia , Difosfato de Adenosina/análogos & derivados , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/química , Sítios de Ligação , Calorimetria , Dicroísmo Circular , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Corantes Fluorescentes/metabolismo , Proteínas de Choque Térmico HSP40 , Proteínas de Choque Térmico/química , Hidrólise , Cinética , Luciferases/química , Luciferases/metabolismo , Dobramento de Proteína , Renaturação Proteica , Estrutura Secundária de Proteína , Termodinâmica , Thermus thermophilus/metabolismo , Titulometria
7.
J Mol Biol ; 304(1): 43-53, 2000 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-11071809

RESUMO

The 60-fold reduced phosphorylation rate of azidothymidine (AZT) monophosphate (AZTMP), the partially activated AZT metabolite, by human thymidylate kinase (TMPK) severely limits the efficacy of this anti-HIV prodrug. Crystal structures of different TMPK nucleotide complexes indicate that steric hindrance by the azido group of AZTMP prevents formation of the catalytically active closed conformation of the P-loop of TMPK. The F105Y mutant and a chimeric mutant that contains sequences of the human and Escherichia coli enzyme phosphorylate AZTMP 20-fold faster than the wild-type enzyme. The structural basis of the increased activity is assigned to stabilization of the closed P-loop conformation.


Assuntos
Fármacos Anti-HIV/metabolismo , Mutação/genética , Núcleosídeo-Fosfato Quinase/química , Núcleosídeo-Fosfato Quinase/metabolismo , Pró-Fármacos/metabolismo , Nucleotídeos de Timina/metabolismo , Zidovudina/análogos & derivados , Zidovudina/metabolismo , Sítios de Ligação , Catálise , Cristalografia por Raios X , Didesoxinucleotídeos , Estabilidade Enzimática , Escherichia coli/enzimologia , Escherichia coli/genética , Humanos , Cinética , Modelos Moleculares , Núcleosídeo-Fosfato Quinase/genética , Nucleotídeos/metabolismo , Fosforilação , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo
8.
J Mol Biol ; 303(4): 583-92, 2000 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-11054293

RESUMO

Hsp90 is an abundant molecular chaperone that functions in an ATP-dependent manner in vivo. The ATP-binding site is located in the N-terminal domain of Hsp90. Here, we dissect the ATPase cycle of Hsp90 kinetically. We find that Hsp90 binds ATP with a two-step mechanism. The rate-limiting step of the ATPase cycle is the hydrolysis of ATP. Importantly, ATP becomes trapped and committed to hydrolyze during the cycle. In the isolated ATP-binding domain of Hsp90, however, the bound ATP was not committed and the turnover numbers were markedly reduced. Analysis of a series of truncation mutants of Hsp90 showed that C-terminal regions far apart in sequence from the ATP-binding domain are essential for trapping the bound ATP and for maximum hydrolysis rates. Our results suggest that ATP binding and hydrolysis drive conformational changes that involve the entire molecule and lead to repositioning of the N and C-terminal domains of Hsp90.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/metabolismo , Leveduras/enzimologia , Difosfato de Adenosina/metabolismo , Adenosina Trifosfatases/genética , Sítios de Ligação , Catálise , Proteínas de Choque Térmico HSP90/genética , Hidrólise , Cinética , Modelos Químicos , Estrutura Terciária de Proteína , Deleção de Sequência/genética , Leveduras/química , Leveduras/genética
9.
Structure ; 8(6): 629-42, 2000 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-10873853

RESUMO

BACKGROUND: Thymidylate kinase (TMPK) is a nucleoside monophosphate kinase that catalyzes the reversible phosphoryltransfer between ATP and TMP to yield ADP and TDP. In addition to its vital role in supplying precursors for DNA synthesis, human TMPK has an important medical role participating in the activation of a number of anti-HIV prodrugs. RESULTS: Crystal structures of human TMPK in complex with TMP and ADP, TMP and the ATP analog AppNHp, TMP with ADP and the phosphoryl analog AlF(3), TDP and ADP, and the bisubstrate analog TP(5)A were determined. The conformations of the P-loop, the LID region, and the adenine-binding loop vary according to the nature of the complex. Substitution of ADP by AppNHp results in partial closure of the P-loop and the rotation of the TMP phosphate group to a catalytically unfavorable position, which rotates back in the AlF(3) complex to a position suitable for in-line attack. In the fully closed state observed in the TP(5)A and the TDP-ADP complexes, Asp15 interacts strongly with the 3'-hydroxyl group of TMP. CONCLUSIONS: The observed changes of nucleotide state and conformation and the corresponding protein structural changes are correlated with intermediates occurring along the reaction coordinate and show the sequence of events occurring during phosphate transfer. The low catalytic activity of human TMPK appears to be determined by structural changes required to achieve catalytic competence and it is suggested that a mechanism might exist to accelerate the activity.


Assuntos
Núcleosídeo-Fosfato Quinase/química , Núcleosídeo-Fosfato Quinase/metabolismo , Difosfato de Adenosina/metabolismo , Adenilil Imidodifosfato/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Humanos , Técnicas In Vitro , Modelos Moleculares , Conformação Proteica , Especificidade por Substrato , Timidina Monofosfato/metabolismo
10.
Protein Sci ; 8(11): 2524-8, 1999 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-10595559

RESUMO

The solution of the crystallographic macromolecular phase problem requires incorporation of heavy atoms into protein crystals. Several 2'-halogenated nucleotides have been reported as potential universal phasing tools for nucleotide binding proteins. However, only limited data are available dealing with the effect of 2'-substitution on recognition by the protein. We have determined equilibrium dissociation constants of 2'-halogenated ATP analogues for the ATP binding proteins UMP/CMP kinase and the molecular chaperone DnaK. Whereas the affinities to UMP/CMP kinase are of the same order of magnitude as for unsubstituted ATP, the affinities to DnaK are drastically decreased to undetectable levels. For 2'-halogenated GTP analogues, the kinetics of interaction were determined for the small GTPases p21ras(Y32W) (fluorescent mutant) and RabS. The rates of association were found to be within about one order of magnitude of those for the nonsubstituted nucleotides, whereas the rates of dissociation were accelerated by factors of approximately 100 (p21ras) or approximately 10(5) (Rab5), and the resulting equilibrium dissociation constants are in the nm or microM range, respectively. The data demonstrate that 2'halo-ATP and -GTP are substrates or ligands for all proteins tested except the chaperone DnaK. Due to the very high affinities of a large number of GTP binding proteins to guanine nucleotides, even a 10(5)-fold decrease in affinity as observed for Rab5 places the equilibrium dissociation constant in the microM range, so that they are still well suited for crystallization of the G-protein:nucleotide complex.


Assuntos
Trifosfato de Adenosina/análogos & derivados , Cristalografia por Raios X/métodos , Proteínas de Escherichia coli , Guanosina Trifosfato/análogos & derivados , Proteínas/química , Trifosfato de Adenosina/síntese química , Guanosina Trifosfato/síntese química , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/metabolismo , Halogênios , Indicadores e Reagentes , Cinética , Núcleosídeo-Fosfato Quinase , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas rab5 de Ligação ao GTP/química , Proteínas rab5 de Ligação ao GTP/metabolismo
11.
J Biol Chem ; 274(50): 35289-92, 1999 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-10585390

RESUMO

Based on the knowledge of the crystal structures of yeast and Escherichia coli thymidylate kinases (TmpKs) and the observation that TmpK from E. coli can phosphorylate azidothymidine monophosphate (AZT-MP) much more efficiently than either the yeast or the highly homologous human enzyme, we have engineered yeast and human TmpKs to obtain enzymes that have dramatically improved AZT-MP phosphorylation properties. These modified enzymes have properties that make them attractive candidates for gene therapeutic approaches to potentiating the action of AZT as an inhibitor of human immunodeficiency virus (HIV) replication. In particular, insertion of the lid domain of the bacterial TmpK into the human enzyme results in a pronounced change of the acceptance of AZT-MP such that it is now phosphorylated even faster than TMP.


Assuntos
Núcleosídeo-Fosfato Quinase/química , Núcleosídeo-Fosfato Quinase/metabolismo , Zidovudina/farmacocinética , Sequência de Aminoácidos , Substituição de Aminoácidos , Clonagem Molecular , Didesoxinucleotídeos , Escherichia coli/enzimologia , Humanos , Cinética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/enzimologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Nucleotídeos de Timina/farmacocinética , Zidovudina/análogos & derivados
13.
Proc Natl Acad Sci U S A ; 96(10): 5452-7, 1999 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-10318904

RESUMO

Hsp70 chaperones assist a large variety of protein folding processes within the entire lifespan of proteins. Central to these activities is the regulation of Hsp70 by DnaJ cochaperones. DnaJ stimulates Hsp70 to hydrolyze ATP, a key step that closes its substrate-binding cavity and thus allows stable binding of substrate. We show that DnaJ stimulates ATP hydrolysis by Escherichia coli Hsp70, DnaK, very efficiently to >1000-fold, but only if present at high (micromolar) concentration. In contrast, the chaperone activity of DnaK in luciferase refolding was maximal at several hundredfold lower concentration of DnaJ. However, DnaJ was capable of maximally stimulating the DnaK ATPase even at this low concentration, provided that protein substrate was present, indicating synergistic action of DnaJ and substrate. Peptide substrates were poorly effective in this synergistic action. DnaJ action required binding of protein substrates to the central hydrophobic pocket of the substrate-binding cavity of DnaK, as evidenced by the reduced ability of DnaJ to stimulate ATP hydrolysis by a DnaK mutant with defects in substrate binding. At high concentrations, DnaJ itself served as substrate for DnaK in a process considered to be unphysiological. Mutant analysis furthermore revealed that DnaJ-mediated stimulation of ATP hydrolysis requires communication between the ATPase and substrate-binding domains of DnaK. This mechanism thus allows DnaJ to tightly couple ATP hydrolysis by DnaK with substrate binding and to avoid jamming of the DnaK chaperone with peptides. It probably is conserved among Hsp70 family members and is proposed to account for their functional diversity.


Assuntos
Proteínas de Escherichia coli , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/metabolismo , Trifosfato de Adenosina/metabolismo , Benzofenonas/metabolismo , Sítios de Ligação , Ativação Enzimática , Escherichia coli , Proteínas de Choque Térmico HSP40 , Proteínas de Choque Térmico HSP70/genética , Luciferases/química , Mutação , Ligação Proteica , Desnaturação Proteica , Dobramento de Proteína
14.
J Mol Biol ; 287(3): 511-25, 1999 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-10092456

RESUMO

The Escherichia coli DnaK (DnaKEco) chaperone cycle is tightly regulated by the cochaperones DnaJ, which stimulates ATP hydrolysis, and GrpE, which acts as a nucleotide exchange factor. The Thermus thermophilus DnaK (DnaKTth) system additionally comprises the DnaK-DnaJ assembly factor (DafATth) that is mediating formation of a 300 kDa DnaKTth. DnaJTth.DafATth complex.A model peptide derived from the tumor suppressor protein p53 was used to dissect the regulation of the individual kinetic key steps of the DnaKTth nucleotide/chaperone cycle. As with DnaKEco the DnaKTth.ATP complex binds substrates with reduced affinity and large exchange rates compared to the DnaKTth.ADP.Pi state. In contrast to DnaKEco, ADP-Pi release is slow compared to the rate of hydrolysis, reversing the balance of the two functional nucleotide states. Whereas GrpETth stimulates nucleotide release from DnaKTth, DnaJTth does not accelerate ATP hydrolysis under various experimental conditions. However, it exerts influence on the interaction of DnaKTth with substrates: in the presence of DafATth, DnaJTth inhibits substrate binding, and substrate already bound to DnaKTth is displaced by DnaJTth and DafATth, indicating competitive binding of DnaJTth/DafATth and substrate. It thus appears that the DnaKTth. DnaJTth.DafATth complex as isolated from T. thermophilus does not represent the active species in the DnaKTth chaperone cycle. Isothermal titration calorimetry showed that the ternary complex of DnaKTth, DnaJTth and DafATth is assembling with high affinity, whereas binary complexes of DnaKTth and DnaJTth or DafATth were not detectable, indicating highly synergistic formation of the 300 kDa DnaKTth. DnaJTth.DafATth complex. Based on these results, a model describing the DnaKTth chaperone cycle and its regulation by cochaperones is proposed where DnaKTth. DnaJTth.DafATth constitutes the resting state, and a DnaKTth. substrate.DnaJTth complex is the active chaperone species. The novel factor DafATth that mediates interaction of DnaKTth with DnaJTth would thus serve as a "template" to stabilise the ternary DnaKTth.DafATth.DnaJTth complex until it is replaced by substrate proteins under heat shock conditions.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli , Proteínas de Choque Térmico HSP70/metabolismo , Chaperonas Moleculares/metabolismo , Thermus thermophilus/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/genética , Sítios de Ligação , Clonagem Molecular , Escherichia coli/metabolismo , Proteínas de Choque Térmico HSP40 , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Hidrólise , Cinética , Substâncias Macromoleculares , Modelos Biológicos , Chaperonas Moleculares/genética , Ligação Proteica , Temperatura , Thermus thermophilus/genética , Proteína Supressora de Tumor p53/metabolismo
15.
Biochemistry ; 38(10): 2882-91, 1999 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-10074340

RESUMO

A pressure-jump apparatus was employed in investigating the kinetics of protein unfolding and refolding. In the reaction cell, the pressure can be increased or decreased by 100-160 bar within 50-100 microseconds and then held constant. Thus, unfolding and refolding reactions in the time range from 70 microseconds to 70 s can be followed with this technique. Measurements are possible in the transition regions of thermally or denaturant-induced folding in a wide range of temperatures and solvent conditions. We used this pressure-jump method to determine the temperature dependence of the rate constants of unfolding and refolding of the cold shock protein of Bacillus subtilis and of three variants thereof with Phe --> Ala substitutions in the central beta-sheet region. For all variants, the change in heat capacity occurred in refolding between the unfolded and activated states, suggesting that the overall native-like character of the activated state of folding was not changed by the deletion of individual Phe side chains. The Phe27Ala mutation affected the rate of unfolding only; the Phe15Ala and Phe17Ala mutations changed the kinetics of both unfolding and refolding. Although the activated state of folding of the cold shock protein is overall native-like, individual side chains are still in a non-native environment.


Assuntos
Proteínas de Bactérias/química , Proteínas de Transporte/química , Proteínas de Choque Térmico , Dobramento de Proteína , Alanina/química , Alanina/genética , Substituição de Aminoácidos/genética , Bacillus subtilis , Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Guanidina , Cinética , Fenilalanina/química , Fenilalanina/genética , Pressão , Termodinâmica , Fatores de Tempo , Viscosidade
16.
Protein Sci ; 8(12): 2697-704, 1999 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-10631985

RESUMO

Direct thermodynamic and kinetic investigations of the binding of nucleotides to the nucleoside monophosphate (NMP) site of NMP kinases have not been possible so far because a spectroscopic probe was not available. By coupling a fluorescent N-methylanthraniloyl- (mant) group to the beta-phosphate of CDP via a butyl linker, a CDP analogue [(Pbeta)MABA-CDP] was obtained that still binds specifically to the NMP site of UmpKdicty, because the base and the ribose moieties, which are involved in specific interactions, are not modified. This allows the direct determination of binding constants for its substrates in competition experiments.


Assuntos
Cistina Difosfato/análogos & derivados , Cistina Difosfato/química , Dictyostelium/química , Corantes Fluorescentes/química , Núcleosídeo-Fosfato Quinase/química , Pirimidinonas/química , Trifosfato de Adenosina/química , Animais , Sítios de Ligação , Cistina Difosfato/síntese química , Corantes Fluorescentes/síntese química , Cinética , Espectroscopia de Ressonância Magnética , Espectrometria de Fluorescência
17.
Proc Natl Acad Sci U S A ; 95(24): 14045-50, 1998 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-9826650

RESUMO

The crystal structures of Escherichia coli thymidylate kinase (TmpK) in complex with P1-(5'-adenosyl)-P5-(5'-thymidyl)pentaphosphate and P1-(5'-adenosyl)P5-[5'-(3'-azido-3'-deoxythymidine)] pentaphosphate have been solved to 2.0-A and 2.2-A resolution, respectively. The overall structure of the bacterial TmpK is very similar to that of yeast TmpK. In contrast to the human and yeast TmpKs, which phosphorylate 3'-azido-3'-deoxythymidine 5'-monophosphate (AZT-MP) at a 200-fold reduced turnover number (kcat) in comparison to the physiological substrate dTMP, reduction of kcat is only 2-fold for the bacterial enzyme. The different kinetic properties toward AZT-MP between the eukaryotic TmpKs and E. coli TmpK can be rationalized by the different ways in which these enzymes stabilize the presumed transition state and the different manner in which a carboxylic acid side chain in the P loop interacts with the deoxyribose of the monophosphate. Yeast TmpK interacts with the 3'-hydroxyl of dTMP through Asp-14 of the P loop in a bidentate manner: binding of AZT-MP results in a shift of the P loop to accommodate the larger substituent. In E. coli TmpK, the corresponding residue is Glu-12, and it interacts in a side-on fashion with the 3'-hydroxyl of dTMP. This different mode of interaction between the P loop carboxylic acid with the 3' substituent of the monophosphate deoxyribose allows the accommodation of an azido group in the case of the E. coli enzyme without significant P loop movement. In addition, although the yeast enzyme uses Arg-15 (a glycine in E. coli) to stabilize the transition state, E. coli seems to use Arg-153 from a region termed Lid instead. Thus, the binding of AZT-MP to the yeast TmpK results in the shift of a catalytic residue, which is not the case for the bacterial kinase.


Assuntos
Antivirais/metabolismo , Escherichia coli/enzimologia , Núcleosídeo-Fosfato Quinase/química , Núcleosídeo-Fosfato Quinase/metabolismo , Estrutura Secundária de Proteína , Zidovudina/análogos & derivados , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Didesoxinucleotídeos , Humanos , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Fosforilação , Saccharomyces cerevisiae/enzimologia , Alinhamento de Sequência , Zidovudina/metabolismo
18.
J Mol Biol ; 279(4): 841-53, 1998 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-9642065

RESUMO

The genes coding for the Thermus thermophilus (Tth) homologues of the molecular chaperones DnaK and GrpE (DnaKTth and GrpETth) were cloned and expressed in Escherichia coli. The proteins were purified and their functional properties were assessed by equilibrium and transient kinetic methods. DnaKTth has an intrinsic ATPase activity of 3x10(-4) s-1 at 25 degreesC and 10x10(-4) s-1 at 75 degreesC under single turnover conditions. It binds the fluorescent nucleotide analogue N8-(4-N'-methylanthraniloylaminobutyl)-8-aminoadenosine 5'-diphosphate (MABA-ADP) with a dissociation constant (Kd) of 3 nM and ADP with a Kd of 47 nM at 25 degreesC. At 75 degreesC the affinities are decreased fivefold to 15 nM (MABA-ADP) and 280 nM (ADP). The kinetic constants for two-step binding of MABA-ADP and of ADP to DnaKTth were determined at 25 degreesC and 75 degreesC, respectively. GrpETth acts as a nucleotide-exchange factor on DnaKTth and accelerates the release of bound MABA-ADP significantly. This shows that the nucleotide-binding domain is functionally intact, and that the specific interaction of DnaKTth and GrpETth is mediating nucleotide exchange.A fluorescently labelled peptide that comprises a subsequence of the E. coli transcription factor sigma32 binds to nucleotide-free DnaKTth with a Kd of 4.9 microM. Displacement with unlabelled peptide yields a Kd of 5.0 microM for the unlabelled peptide. Thus the peptide-binding domain also appears to be functional.For the cellular chaperone function of DnaK, a coupling between nucleotide and peptide-binding domains is required. However, with DnaKTth in the ATP as well as in the ADP.Pi-state, peptide is bound and released within seconds. No correlation between ATP-binding or hydrolysis by DnaKTth and changes in the sigma32 peptide exchange rates could be detected. It thus appears that the DnaK system from Th. thermophilus has a different mechanism of coupling the nucleotide state to the fast and slow peptide exchange properties.


Assuntos
Proteínas de Escherichia coli , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/metabolismo , Thermus thermophilus/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Relação Estrutura-Atividade , Temperatura
19.
Biochemistry ; 37(11): 3677-86, 1998 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-9521686

RESUMO

The crystal structure of yeast thymidylate kinase (TmpK) complexed with the bisubstrate inhibitor P1-(5'-adenosyl) P5-(5'-thymidyl) pentaphosphate (TP5A) was determined at 2.0 A resolution. In this complex, TmpK adopts a closed conformation with a region (LID) of the protein closing upon the substrate and forming a helix. The interactions of TmpK and TP5A strongly suggest that arginine 15, which is located in the phosphate binding loop (P-loop) sequence, plays a catalytic role by interacting with an oxygen atom of the transferred phosphoryl group. Unlike other nucleoside monophosphate kinases where basic residues from the LID region participate in stabilizing the transition state, TmpK lacks such residues in the LID region. We attribute this function to Arg 15 of the P-loop. TmpK plays an important role in the phosphorylation of the AIDS prodrug AZT. The structures of TmpK with dTMP and with AZT-MP [Lavie, A., et al. (1997) Nat. Struct. Biol. 4, 601-604] implicate the movement of Arg15 in response to AZT-MP binding as an important factor in the 200-fold reduced catalytic rate with AZT-MP. TmpK from Escherichia coli lacks this arginine in its P-loop while having basic residues in the LID region. This suggested that, if such a P-loop movement were to occur in the E. coli TmpK upon AZT-MP binding, it should not have such a detrimental effect on catalysis. This hypothesis was tested, and as postulated, E. coli TmpK phosphorylates AZT-MP only 2.5 times slower than dTMP.


Assuntos
Fosfatos de Dinucleosídeos/química , Núcleosídeo-Fosfato Quinase/antagonistas & inibidores , Núcleosídeo-Fosfato Quinase/química , Biotransformação , Catálise/efeitos dos fármacos , Cristalografia por Raios X , Fosfatos de Dinucleosídeos/metabolismo , Fosfatos de Dinucleosídeos/farmacologia , Ativação Enzimática/efeitos dos fármacos , Proteínas Fúngicas/química , Herpesvirus Humano 1/enzimologia , Humanos , Cinética , Substâncias Macromoleculares , Modelos Moleculares , Núcleosídeo-Fosfato Quinase/metabolismo , Saccharomyces cerevisiae/enzimologia , Schizosaccharomyces/enzimologia , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Zidovudina/metabolismo
20.
Nat Med ; 3(8): 922-4, 1997 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-9256287

RESUMO

Nucleoside-based inhibitors of reverse transcriptase were the first drugs to be used in the chemotherapy of AIDS. After entering the cell, these substances are activated to their triphosphate form by cellular kinases, after which they are potent chain terminators for the growing viral DNA. The two main factors limiting their efficacy are probably interrelated. These are the insufficient degree of reduction of viral load at the commencement of treatment and the emergence of resistant variants of the virus. The reason for the relatively poor suppression of viral replication appears to be inefficient metabolic activation. Thus, for the most extensively used drug, 3'-azido-3'-deoxythymidine (AZT), whereas phosphorylation to the monophosphate is facile, the product is a very poor substrate for the next kinase in the cascade, thymidylate kinase. Because of this, although high concentrations of the monophosphate can be reached in the cell, the achievable concentration of the active triphosphate is several orders of magnitude lower. Determination of the structure of thymidylate kinase as a complex with AZT monophosphate (AZTMP) together with studies on the kinetics of its phosphorylation have now led to a detailed understanding of the reasons for and consequences of the poor substrate properties.


Assuntos
Fármacos Anti-HIV/farmacocinética , Inibidores da Transcriptase Reversa/farmacocinética , Carga Viral , Zidovudina/farmacocinética , Biotransformação , Resistência Microbiana a Medicamentos , HIV-1/efeitos dos fármacos , HIV-1/isolamento & purificação , HIV-1/fisiologia , Núcleosídeo-Fosfato Quinase/química , Núcleosídeo-Fosfato Quinase/metabolismo , Fosforilação , Conformação Proteica , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...