Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2657: 241-249, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37149536

RESUMO

Fluorescently labeled polysaccharides enable the visualization of carbohydrate-bacterial interactions and the quantification of carbohydrate hydrolysis rates in cultures and complex communities. Here, we present the method of generating polysaccharides conjugated to the fluorescent molecule, fluoresceinamine. Further, we describe the protocol of incubating these probes in bacterial cultures and complex environmental microbial communities, visualizing bacterial-probe interactions using fluorescence microscopy, and quantifying these interactions using flow cytometry. Finally, we present a novel approach for the in situ metabolic phenotyping of bacterial cells using fluorescently activated cell sorting coupled with omics-based analysis.


Assuntos
Carboidratos , Polissacarídeos , Polissacarídeos/metabolismo , Corantes Fluorescentes/metabolismo , Microscopia de Fluorescência , Citometria de Fluxo
2.
Nat Chem Biol ; 18(5): 501-510, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35289327

RESUMO

Native porphyran is a hybrid of porphryan and agarose. As a common element of edible seaweed, this algal galactan is a frequent component of the human diet. Bacterial members of the human gut microbiota have acquired polysaccharide utilization loci (PULs) that enable the metabolism of porphyran or agarose. However, the molecular mechanisms that underlie the deconstruction and use of native porphyran remains incompletely defined. Here, we have studied two human gut bacteria, porphyranolytic Bacteroides plebeius and agarolytic Bacteroides uniformis, that target native porphyran. This reveals an exo-based cycle of porphyran depolymerization that incorporates a keystone sulfatase. In both PULs this cycle also works together with a PUL-encoded agarose depolymerizing machinery to synergistically reduce native porphyran to monosaccharides. This provides a framework for understanding the deconstruction of a hybrid algal galactan, and insight into the competitive and/or syntrophic relationship of gut microbiota members that target rare nutrients.


Assuntos
Microbioma Gastrointestinal , Bactérias/metabolismo , Galactanos , Humanos , Polissacarídeos/metabolismo , Sefarose
3.
Front Microbiol ; 13: 1020250, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36938132

RESUMO

Rapid dietary changes, such as switching from high-forage to high-grain diets, can modify the rumen microbiome and initiate gastrointestinal distress, such as bloating. In such cases, feed additives, including prebiotics and live microbials, can be used to mitigate these negative consequences. Bio-Mos® is a carbohydrate-based prebiotic derived from yeast cells that is reported to increase livestock performance. Here, the responses of rumen bacterial cells to Bio-Mos® were quantified, sorted by flow cytometry using fluorescently-labeled yeast mannan, and taxonomically characterized using fluorescence in situ hybridization and 16S rRNA sequencing. Further, to evaluate the effects of bovine-adapted Bacteroides thetaiotaomicron administration as a live microbial with and without Bio-Mos® supplementation, we analyzed microbial fermentation products, changes to carbohydrate profiles, and shifts in microbial composition of an in vitro rumen community. Bio-Mos® was shown to be an effective prebiotic that significantly altered microbial diversity, composition, and fermentation; while addition of B. thetaiotaomicron had no effect on community composition and resulted in fewer significant changes to microbial fermentation. When combined with Bio-Mos®, there were notable, although not significant, changes to major bacterial taxa, along with increased significant changes in fermentation end products. These data suggest a synergistic effect is elicited by combining Bio-Mos® and B. thetaiotaomicron. This protocol provides a new in vitro methodology that could be extended to evaluate prebiotics and probiotics in more complex artificial rumen systems and live animals.

4.
Front Microbiol ; 12: 643730, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868201

RESUMO

Marine heterotrophic microorganisms remineralize about half of the annual primary production, with the microbiomes on and around algae and particles having a major contribution. These microbiomes specifically include free-living chemotactic and particle-attached bacteria, which are often difficult to analyze individually, as the standard method of size-selective filtration only gives access to particle-attached bacteria. In this study, we demonstrated that particle collection in Imhoff sedimentation cones enriches microbiomes that included free-living chemotactic bacteria and were distinct from particle microbiomes obtained by filtration or centrifugation. Coastal seawater was collected during North Sea phytoplankton spring blooms, and the microbiomes were investigated using 16S rRNA amplicon sequencing and fluorescence microscopy. Enrichment factors of individual operational taxonomic units (OTUs) were calculated for comparison of fractionated communities after separation with unfractionated seawater communities. Filtration resulted in a loss of cells and yielded particle fractions including bacterial aggregates, filaments, and large cells. Centrifugation had the lowest separation capacity. Particles with a sinking rate of >2.4 m day-1 were collected in sedimentation cones as a bottom fraction and enriched in free-living chemotactic bacteria, i.e., Sulfitobacter, Pseudoalteromonas, and Vibrio. Subfractions of these bottom fractions, obtained by centrifugation, showed enrichment of either free-living or particle-attached bacteria. We identified five distinct enrichment patterns across all separation techniques: mechano-sensitive and mechano-stable free-living bacteria and three groups of particle-attached bacteria. Simultaneous enrichment of particle-attached and chemotactic free-living bacteria in Imhoff sedimentation cones is a novel experimental access to these groups providing more insights into the diversity, structure, and function of particle-associated microbiomes, including members of the phycosphere.

5.
Front Microbiol ; 12: 632684, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679661

RESUMO

The human diet is temporally and spatially dynamic, and influenced by culture, regional food systems, socioeconomics, and consumer preference. Such factors result in enormous structural diversity of ingested glycans that are refractory to digestion by human enzymes. To convert these glycans into metabolizable nutrients and energy, humans rely upon the catalytic potential encoded within the gut microbiome, a rich collective of microorganisms residing in the gastrointestinal tract. The development of high-throughput sequencing methods has enabled microbial communities to be studied with more coverage and depth, and as a result, cataloging the taxonomic structure of the gut microbiome has become routine. Efforts to unravel the microbial processes governing glycan digestion by the gut microbiome, however, are still in their infancy and will benefit by retooling our approaches to study glycan structure at high resolution and adopting next-generation functional methods. Also, new bioinformatic tools specialized for annotating carbohydrate-active enzymes and predicting their functions with high accuracy will be required for deciphering the catalytic potential of sequence datasets. Furthermore, physiological approaches to enable genotype-phenotype assignments within the gut microbiome, such as fluorescent polysaccharides, has enabled rapid identification of carbohydrate interactions at the single cell level. In this review, we summarize the current state-of-knowledge of these methods and discuss how their continued development will advance our understanding of gut microbiome function.

6.
Microbiome ; 9(1): 23, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33482928

RESUMO

Gut microbiomes, such as the microbial community that colonizes the rumen, have vast catabolic potential and play a vital role in host health and nutrition. By expanding our understanding of metabolic pathways in these ecosystems, we will garner foundational information for manipulating microbiome structure and function to influence host physiology. Currently, our knowledge of metabolic pathways relies heavily on inferences derived from metagenomics or culturing bacteria in vitro. However, novel approaches targeting specific cell physiologies can illuminate the functional potential encoded within microbial (meta)genomes to provide accurate assessments of metabolic abilities. Using fluorescently labeled polysaccharides, we visualized carbohydrate metabolism performed by single bacterial cells in a complex rumen sample, enabling a rapid assessment of their metabolic phenotype. Specifically, we identified bovine-adapted strains of Bacteroides thetaiotaomicron that metabolized yeast mannan in the rumen microbiome ex vivo and discerned the mechanistic differences between two distinct carbohydrate foraging behaviors, referred to as "medium grower" and "high grower." Using comparative whole-genome sequencing, RNA-seq, and carbohydrate-active enzyme fingerprinting, we could elucidate the strain-level variability in carbohydrate utilization systems of the two foraging behaviors to help predict individual strategies of nutrient acquisition. Here, we present a multi-faceted study using complimentary next-generation physiology and "omics" approaches to characterize microbial adaptation to a prebiotic in the rumen ecosystem. Video abstract.


Assuntos
Bactérias/classificação , Bactérias/metabolismo , Fluorescência , Microbioma Gastrointestinal , Polissacarídeos/análise , Polissacarídeos/metabolismo , Rúmen/microbiologia , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Bovinos , Corantes Fluorescentes/análise , Metagenômica
7.
Environ Microbiol ; 22(5): 1884-1900, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32128969

RESUMO

Spring phytoplankton blooms in temperate environments contribute disproportionately to global marine productivity. Bloom-derived organic matter, much of it occurring as polysaccharides, fuels biogeochemical cycles driven by interacting autotrophic and heterotrophic communities. We tracked changes in the mode of polysaccharide utilization by heterotrophic bacteria during the course of a diatom-dominated bloom in the German Bight, North Sea. Polysaccharides can be taken up in a 'selfish' mode, where initial hydrolysis is coupled to transport into the periplasm, such that little to no low-molecular weight (LMW) products are externally released to the environment. Alternatively, polysaccharides hydrolyzed by cell-surface attached or free extracellular enzymes (external hydrolysis) yield LMW products available to the wider bacterioplankton community. In the early bloom phase, selfish activity was accompanied by low extracellular hydrolysis rates of a few polysaccharides. As the bloom progressed, selfish uptake increased markedly, and external hydrolysis rates increased, but only for a limited range of substrates. The late bloom phase was characterized by high external hydrolysis rates of a broad range of polysaccharides and reduced selfish uptake of polysaccharides, except for laminarin. Substrate utilization mode is related both to substrate structural complexity and to the bloom-stage dependent composition of the heterotrophic bacterial community.


Assuntos
Bactérias/metabolismo , Diatomáceas/metabolismo , Eutrofização/fisiologia , Fitoplâncton/metabolismo , Polissacarídeos/metabolismo , Organismos Aquáticos , Bactérias/genética , Diatomáceas/genética , Processos Heterotróficos/fisiologia , Mar do Norte , Fitoplâncton/genética , Fitoplâncton/microbiologia , Estações do Ano , Água do Mar/microbiologia
8.
Front Microbiol ; 11: 583158, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33391202

RESUMO

Primary productivity occurs throughout the deep euphotic zone of the oligotrophic South Pacific Gyre (SPG), fueled largely by the regeneration of nutrients and thus recycling of organic matter. We investigated the heterotrophic capabilities of the SPG's bacterial communities by examining their ability to process polysaccharides, an important component of marine organic matter. We focused on the initial step of organic matter degradation by measuring the activities of extracellular enzymes that hydrolyze six different polysaccharides to smaller sizes. This process can occur by two distinct mechanisms: "selfish uptake," in which initial hydrolysis is coupled to transport of large polysaccharide fragments into the periplasmic space of bacteria, with little to no loss of hydrolysis products to the external environment, and "external hydrolysis," in which low molecular weight (LMW) hydrolysis products are produced in the external environment. Given the oligotrophic nature of the SPG, we did not expect high enzymatic activity; however, we found that all six polysaccharides were hydrolyzed externally and taken up selfishly in the central SPG, observations that may be linked to a comparatively high abundance of diatoms at the depth and location sampled (75 m). At the edge of the gyre and close to the center of the gyre, four of six polysaccharides were externally hydrolyzed, and a lower fraction of the bacterial community showed selfish uptake. One polysaccharide (fucoidan) was selfishly taken up without measurable external hydrolysis at two stations. Additional incubations of central gyre water from depths of 1,250 and 2,800 m with laminarin (an abundant polysaccharide in the ocean) led to extreme growth of opportunistic bacteria (Alteromonas), as tracked by cell counts and next generation sequencing of the bacterial communities. These Alteromonas appear to concurrently selfishly take up laminarin and release LMW hydrolysis products. Overall, extracellular enzyme activities in the SPG were similar to activities in non-oligotrophic regions, and a considerable fraction of the community was capable of selfish uptake at all three stations. A diverse set of bacteria responded to and are potentially important for the recycling of organic matter in the SPG.

9.
Appl Environ Microbiol ; 85(19)2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31324630

RESUMO

Large surface-to-volume ratios provide optimal nutrient uptake conditions for small microorganisms in oligotrophic habitats. The surface area can be increased with appendages. Here, we describe chains of interconnecting vesicles protruding from cells of strain Hel3_A1_48, affiliating with Formosa spp. within the Flavobacteriia and originating from coastal free-living bacterioplankton. The chains were up to 10 µm long and had vesicles emanating from the outer membrane with a single membrane and a size of 80 to 100 nm by 50 to 80 nm. Cells extruded membrane tubes in the exponential phase, whereas vesicle chains dominated on cells in the stationary growth phase. This formation is known as pearling, a physical morphogenic process in which membrane tubes protrude from liposomes and transform into chains of interconnected vesicles. Proteomes of whole-cell membranes and of detached vesicles were dominated by outer membrane proteins, including the type IX secretion system and surface-attached peptidases, glycoside hydrolases, and endonucleases. Fluorescein-labeled laminarin stained the cells and the vesicle chains. Thus, the appendages provide binding domains and degradative enzymes on their surfaces and probably storage volume in the vesicle lumen. Both may contribute to the high abundance of these Formosa-affiliated bacteria during laminarin utilization shortly after spring algal blooms.IMPORTANCE Microorganisms produce membrane vesicles. One synthesis pathway seems to be pearling that describes the physical formation of vesicle chains from phospholipid vesicles via extended tubes. Bacteria with vesicle chains had been observed as well as bacteria with tubes, but pearling was so far not observed. Here, we report the observation of, initially, tubes and then vesicle chains during the growth of a flavobacterium, suggesting biopearling of vesicle chains. The flavobacterium is abundant during spring bacterioplankton blooms developing after algal blooms and has a special set of enzymes for laminarin, the major storage polysaccharide of microalgae. We demonstrated with fluorescently labeled laminarin that the vesicle chains bind laminarin or contain laminarin-derived compounds. Proteomic analyses revealed surface-attached degradative enzymes on the outer membrane vesicles. We conclude that the large surface area and the lumen of vesicle chains may contribute to the ecological success of this marine bacterium.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Membrana Celular/fisiologia , Flavobacterium/fisiologia , Organismos Aquáticos/fisiologia , Eutrofização , Vesículas Extracelulares/fisiologia , Vesículas Extracelulares/ultraestrutura , Glucanos/metabolismo , Lipossomos , Microscopia Eletrônica , Proteômica
10.
Appl Environ Microbiol ; 85(14)2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31076426

RESUMO

The South Pacific Gyre (SPG) covers 10% of the ocean's surface and is often regarded as a marine biological desert. To gain an on-site overview of the remote, ultraoligotrophic microbial community of the SPG, we developed a novel onboard analysis pipeline, which combines next-generation sequencing with fluorescence in situ hybridization and automated cell enumeration. We tested the pipeline during the SO-245 "UltraPac" cruise from Chile to New Zealand and found that the overall microbial community of the SPG was highly similar to those of other oceanic gyres. The SPG was dominated by 20 major bacterial clades, including SAR11, SAR116, the AEGEAN-169 marine group, SAR86, Prochlorococcus, SAR324, SAR406, and SAR202. Most of the bacterial clades showed a strong vertical (20 m to 5,000 m), but only a weak longitudinal (80°W to 160°W), distribution pattern. Surprisingly, in the central gyre, Prochlorococcus, the dominant photosynthetic organism, had only low cellular abundances in the upper waters (20 to 80 m) and was more frequent around the 1% irradiance zone (100 to 150 m). Instead, the surface waters of the central gyre were dominated by the SAR11, SAR86, and SAR116 clades known to harbor light-driven proton pumps. The alphaproteobacterial AEGEAN-169 marine group was particularly abundant in the surface waters of the central gyre, indicating a potentially interesting adaptation to ultraoligotrophic waters and high solar irradiance. In the future, the newly developed community analysis pipeline will allow for on-site insights into a microbial community within 35 h of sampling, which will permit more targeted sampling efforts and hypothesis-driven research.IMPORTANCE The South Pacific Gyre, due to its vast size and remoteness, is one of the least-studied oceanic regions on earth. However, both remote sensing and in situ measurements indicated that the activity of its microbial community contributes significantly to global biogeochemical cycles. Presented here is an unparalleled investigation of the microbial community of the SPG from 20- to 5,000-m depths covering a geographic distance of ∼7,000 km. This insight was achieved through the development of a novel onboard analysis pipeline, which combines next-generation sequencing with fluorescence in situ hybridization and automated cell enumeration. The pipeline is well comparable to onshore systems based on the Illumina platforms and yields microbial community data in less than 35 h after sampling. Going forward, the ability to gain on-site knowledge of a remote microbial community will permit hypothesis-driven research, through the generation of novel scientific questions and subsequent additional targeted sampling efforts.


Assuntos
Bactérias/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala , Hibridização in Situ Fluorescente , Microbiota , Água do Mar/microbiologia , Bactérias/classificação , Oceano Pacífico
11.
ISME J ; 13(7): 1883-1889, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30936421

RESUMO

Microbes in the intestines of mammals degrade dietary glycans for energy and growth. The pathways required for polysaccharide utilization are functionally diverse; moreover, they are unequally dispersed between bacterial genomes. Hence, assigning metabolic phenotypes to genotypes remains a challenge in microbiome research. Here we demonstrate that glycan uptake in gut bacteria can be visualized with fluorescent glycan conjugates (FGCs) using epifluorescence microscopy. Yeast α-mannan and rhamnogalacturonan-II, two structurally distinct glycans from the cell walls of yeast and plants, respectively, were fluorescently labeled and fed to Bacteroides thetaiotaomicron VPI-5482. Wild-type cells rapidly consumed the FGCs and became fluorescent; whereas, strains that had deleted pathways for glycan degradation and transport were non-fluorescent. Uptake of FGCs, therefore, is direct evidence of genetic function and provides a direct method to assess specific glycan metabolism in intestinal bacteria at the single cell level.


Assuntos
Bacteroides thetaiotaomicron/metabolismo , Metabolismo dos Carboidratos , Carboidratos da Dieta/metabolismo , Microbioma Gastrointestinal , Genoma Bacteriano/genética , Polissacarídeos/metabolismo , Bacteroides thetaiotaomicron/genética , Parede Celular/química , Fluorescência , Intestinos/microbiologia , Pectinas/metabolismo
12.
ISME J ; 13(5): 1119-1132, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30531893

RESUMO

Identifying the roles played by individual heterotrophic bacteria in the degradation of high molecular weight (HMW) substrates is critical to understanding the constraints on carbon cycling in the ocean. At five sites in the Atlantic Ocean, we investigated the processing of organic matter by tracking changes in microbial community composition as HMW polysaccharides were enzymatically hydrolysed over time. During this investigation, we discovered that a considerable fraction of heterotrophic bacteria uses a newly-identified 'selfish' mode of substrate processing. We therefore additionally examined the balance of individual substrate utilisation mechanisms at different locations by linking individual microorganisms to distinct substrate utilisation mechanisms. Through FISH and uptake of fluorescently-labelled polysaccharides, 'selfish' organisms were identified as belonging to the Bacteroidetes, Planctomycetes and Gammaproteobacteria. 'Sharing' (extracellular enzyme producing) and 'scavenging' (non-enzyme producing) organisms predominantly belonged to the Alteromonadaceae and SAR11 clades, respectively. The extent to which individual mechanisms prevail depended on the initial population structure of the bacterial community at a given location and time, as well as the growth rate of specific bacteria. Furthermore, the same substrate was processed in different ways by different members of a pelagic microbial community, pointing to significant follow-on effects for carbon cycling.


Assuntos
Bactérias/metabolismo , Água do Mar/microbiologia , Alteromonadaceae/enzimologia , Alteromonadaceae/metabolismo , Oceano Atlântico , Bactérias/isolamento & purificação , Bacteroidetes/metabolismo , Ciclo do Carbono , Gammaproteobacteria/metabolismo , Processos Heterotróficos , Polissacarídeos/metabolismo
13.
ISME J ; 12(12): 2894-2906, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30061707

RESUMO

Polysaccharide degradation by heterotrophic microbes is a key process within Earth's carbon cycle. Here, we use environmental proteomics and metagenomics in combination with cultivation experiments and biochemical characterizations to investigate the molecular details of in situ polysaccharide degradation mechanisms during microalgal blooms. For this, we use laminarin as a model polysaccharide. Laminarin is a ubiquitous marine storage polymer of marine microalgae and is particularly abundant during phytoplankton blooms. In this study, we show that highly specialized bacterial strains of the Bacteroidetes phylum repeatedly reached high abundances during North Sea algal blooms and dominated laminarin turnover. These genomically streamlined bacteria of the genus Formosa have an expanded set of laminarin hydrolases and transporters that belonged to the most abundant proteins in the environmental samples. In vitro experiments with cultured isolates allowed us to determine the functions of in situ expressed key enzymes and to confirm their role in laminarin utilization. It is shown that laminarin consumption of Formosa spp. is paralleled by enhanced uptake of diatom-derived peptides. This study reveals that genome reduction, enzyme fusions, transporters, and enzyme expansion as well as a tight coupling of carbon and nitrogen metabolism provide the tools, which make Formosa spp. so competitive during microalgal blooms.


Assuntos
Bacteroidetes/fisiologia , Eutrofização , Flavobacteriaceae/fisiologia , Glucanos/metabolismo , Microalgas/microbiologia , Polissacarídeos/metabolismo , Adaptação Fisiológica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteroidetes/genética , Ciclo do Carbono , Flavobacteriaceae/genética , Hidrolases/genética , Hidrolases/metabolismo , Metagenômica , Microalgas/metabolismo , Mar do Norte , Fitoplâncton/metabolismo , Fitoplâncton/microbiologia
14.
Nat Commun ; 8: 14853, 2017 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-28393831

RESUMO

Bacteria of the phylum Planctomycetes have been previously reported to possess several features that are typical of eukaryotes, such as cytosolic compartmentalization and endocytosis-like macromolecule uptake. However, recent evidence points towards a Gram-negative cell plan for Planctomycetes, although in-depth experimental analysis has been hampered by insufficient genetic tools. Here we develop methods for expression of fluorescent proteins and for gene deletion in a model planctomycete, Planctopirus limnophila, to analyse its cell organization in detail. Super-resolution light microscopy of mutants, cryo-electron tomography, bioinformatic predictions and proteomic analyses support an altered Gram-negative cell plan for Planctomycetes, including a defined outer membrane, a periplasmic space that can be greatly enlarged and convoluted, and an energized cytoplasmic membrane. These conclusions are further supported by experiments performed with two other Planctomycetes, Gemmata obscuriglobus and Rhodopirellula baltica. We also provide experimental evidence that is inconsistent with endocytosis-like macromolecule uptake; instead, extracellular macromolecules can be taken up and accumulate in the periplasmic space through unclear mechanisms.


Assuntos
Planctomycetales/metabolismo , Amônia/metabolismo , Endocitose , Genômica , Oxirredução , Filogenia , Planctomycetales/classificação , Planctomycetales/genética , Planctomycetales/fisiologia , Proteômica
15.
ISME J ; 11(7): 1640-1650, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28323277

RESUMO

Heterotrophic microbial communities process much of the carbon fixed by phytoplankton in the ocean, thus having a critical role in the global carbon cycle. A major fraction of the phytoplankton-derived substrates are high-molecular-weight (HMW) polysaccharides. For bacterial uptake, these substrates must initially be hydrolysed to smaller sizes by extracellular enzymes. We investigated polysaccharide hydrolysis by microbial communities during a transect of the Atlantic Ocean, and serendipitously discovered-using super-resolution structured illumination microscopy-that up to 26% of total cells showed uptake of fluorescently labelled polysaccharides (FLA-PS). Fluorescence in situ hybridisation identified these organisms as members of the bacterial phyla Bacteroidetes and Planctomycetes and the gammaproteobacterial genus Catenovulum. Simultaneous membrane staining with nile red indicated that the FLA-PS labelling occurred in the cell but not in the cytoplasm. The dynamics of FLA-PS staining was further investigated in pure culture experiments using Gramella forsetii, a marine member of Bacteroidetes. The staining patterns observed in environmental samples and pure culture tests are consistent with a 'selfish' uptake mechanisms of larger oligosaccharides (>600 Da), as demonstrated for gut Bacteroidetes. Ecologically, this alternative polysaccharide uptake mechanism secures substantial quantities of substrate in the periplasmic space, where further processing can occur without diffusive loss. Such a mechanism challenges the paradigm that hydrolysis of HMW substrates inevitably yields low-molecular-weight fragments that are available to the surrounding community and demonstrates the importance of an alternative mechanism of polysaccharide uptake in marine bacteria.


Assuntos
Alteromonadaceae/fisiologia , Bacteroidetes/fisiologia , Flavobacteriaceae/fisiologia , Polissacarídeos/metabolismo , Água do Mar/microbiologia , Oceano Atlântico , Transporte Biológico/fisiologia , Fitoplâncton
16.
Elife ; 5: e11888, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-27054497

RESUMO

A process of global importance in carbon cycling is the remineralization of algae biomass by heterotrophic bacteria, most notably during massive marine algae blooms. Such blooms can trigger secondary blooms of planktonic bacteria that consist of swift successions of distinct bacterial clades, most prominently members of the Flavobacteriia, Gammaproteobacteria and the alphaproteobacterial Roseobacter clade. We investigated such successions during spring phytoplankton blooms in the southern North Sea (German Bight) for four consecutive years. Dense sampling and high-resolution taxonomic analyses allowed the detection of recurring patterns down to the genus level. Metagenome analyses also revealed recurrent patterns at the functional level, in particular with respect to algal polysaccharide degradation genes. We, therefore, hypothesize that even though there is substantial inter-annual variation between spring phytoplankton blooms, the accompanying succession of bacterial clades is largely governed by deterministic principles such as substrate-induced forcing.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Biota , Eutrofização , Plâncton/microbiologia , Água do Mar/microbiologia , Bactérias/genética , Alemanha , Metagenômica , Mar do Norte
17.
Appl Environ Microbiol ; 82(11): 3289-3296, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27016562

RESUMO

In the age of ever-increasing "-omics" studies, the accurate and statistically robust determination of microbial cell numbers within often-complex samples remains a key task in microbial ecology. Microscopic quantification is still the only method to enumerate specific subgroups of microbial clades within complex communities by, for example, fluorescence in situ hybridization (FISH). In this study, we improved an existing automatic image acquisition and cell enumeration system and adapted it for usage at high seas on board an oceanographic research ship. The system was evaluated by testing settings such as minimal pixel area and image exposure times ashore under stable laboratory conditions before being brought on board and tested under various wind and wave conditions. The system was robust enough to produce high-quality images even with ship heaves of up to 3 m and pitch and roll angles of up to 6.3°. On board the research ship, on average, 25% of the images acquired from plankton samples on filter membranes could be used for cell enumeration. Automated enumeration was highly correlated with manual counts (r(2) > 0.9). Even the smallest of microbial cells in the open ocean, members of the alphaproteobacterial SAR11 clade, could be confidently detected and enumerated. The automated image acquisition and cell enumeration system developed here enables an accurate and reproducible determination of microbial cell counts in planktonic samples and allows insight into the abundance and distribution of specific microorganisms already on board within a few hours.IMPORTANCE In this research article, we report on a new system and software pipeline, which allows for an easy and quick image acquisition and the subsequent enumeration of cells in the acquired images. We put this pipeline through vigorous testing and compared it to manual microscopy counts of microbial cells on membrane filters. Furthermore, we tested this system at sea on board a marine research vessel and counted bacteria on board within a few hours after the retrieval of water samples. The imaging and counting system described here has been successfully applied to a number of laboratory-based studies and allowed the quantification of thousands of samples and FISH preparations (see, e.g., H. Teeling, B. M. Fuchs, D. Becher, C. Klockow, A. Gardebrecht, C. M. Bennke, M. Kassabgy, S. Huang, A. J. Mann, J. Waldmann, M. Weber, A. Klindworth, A. Otto, J. Lange, J. Bernhardt, C. Reinsch, M. Hecker, J. Peplies, F. D. Bockelmann, U. Callies, G. Gerdts, A. Wichels, K. H. Wiltshire, F. O. Glöckner, T. Schweder, and R. Amann, Science 336:608-611, 2012, http://dx.doi.org/10.1126/science.1218344). We adjusted the standard image acquisition software to withstand ship movements. This system will allow for more targeted sampling of the microbial community, leading to a better understanding of the role of microorganisms in the global oceans.


Assuntos
Organismos Aquáticos , Automação Laboratorial/métodos , Carga Bacteriana/métodos , Processamento de Imagem Assistida por Computador/métodos , Microscopia/métodos , Imagem Óptica/métodos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...