RESUMO
Limnoperna fortunei, the golden mussel, is a bivalve mollusk considered an invader in South America. This species is responsible for ecological and economic damages due to its voluminous fouling capability. Chemical biocides such as MXD-100™ and sodium dichloroisocyanurate (NaDCC) are often used to control L. fortunei infestations in hydraulic systems. Thus, we proposed to investigate the effects of different periods (24, 48 and 72 h) of exposure to MXD-100™ (0.56 mg L-1) and NaDCC (1.5 mg L-1) on the gills of L. fortunei through morphological and molecular analyses. NaDCC promoted progressive morphological changes during the analyzed periods and only an upregulation of SOD and HSP70 expression during the first 24 h of exposure. MXD-100™ led to severe morphological changes from the first period of exposure, in addition to an upregulation of SOD, CAT, HSP70 and CYP expression during the first 24 h. In contrast, MXD-100™ led to a downregulation of CAT transcription between 24 and 48 h. In static conditions, NaDCC causes lethal damage after 72 h of exposure, and that exposure needs to be continuous to achieve the control of the species. Meanwhile, the MXD-100™ treatment presented several effects during the first 24 h, showing acute toxicity in a shorter period of time.
RESUMO
Microfouling, ie biofilm formation on surfaces, can have an economic impact and requires costly maintenance in water-powered energy generation systems. In this study, the microbiota of a cooling system (filter and heat exchanger) in the Irapé hydroelectric power plant in Brazil was examined. The goal was to identify bacteria that could be targeted to more efficiently reduce biofilm formation. Two sampling campaigns were made corresponding to two well-defined seasons of the Brazilian Cerrado biome: the dry (campaign 1) and the wet (campaign 2). Microfouling communities varied considerably over time in samples obtained at different times after the last clearance of the heat exchanger. The thermophilic bacteria Meiothermus, Thermomonas and Symbiobacterium were exclusive and abundant in the microfouling of the heat exchanger in campaign 2, while methanotrophs and iron-reducing bacteria were abundant only in filter sediments. These findings could help to guide strategies for ecofriendly measures to reduce biofilm fouling in hydroelectric power plants, minimizing environmental and economic losses.
Assuntos
Bactérias , Água , Archaea , Bactérias/genética , Biofilmes , BrasilRESUMO
The huge increase in data being produced in the genomic era has produced a need to incorporate computers into the research process. Sequence generation, its subsequent storage, interpretation, and analysis are now entirely computer-dependent tasks. Universities from all over the world have been challenged to seek a way of encouraging students to incorporate computational and bioinformatics skills since undergraduation in order to understand biological processes. The aim of this article is to report the experience of awakening students' interest in bioinformatics tools during a course focused on comparative modeling of proteins. The authors start by giving a full description of the course environmental context and students' backgrounds. Then they detail each class and present a general overview of the protein modeling protocol. The positive and negative aspects of the course are also reported, and some of the results generated in class and in projects outside the classroom are discussed. In the last section of the article, general perspectives about the course from students' point of view are given. This work can serve as a guide for professors who teach subjects for which bioinformatics tools are useful and for universities that plan to incorporate bioinformatics into the curriculum.