Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
BMC Bioinformatics ; 25(1): 207, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844845

RESUMO

BACKGROUND: Gene families are groups of homologous genes that often have similar biological functions. These families are formed by gene duplication events throughout evolution, resulting in multiple copies of an ancestral gene. Over time, these copies can acquire mutations and structural variations, resulting in members that may vary in size, motif ordering and sequence. Multigene families have been described in a broad range of organisms, from single-celled bacteria to complex multicellular organisms, and have been linked to an array of phenomena, such as host-pathogen interactions, immune evasion and embryonic development. Despite the importance of gene families, few approaches have been developed for estimating and graphically visualizing their diversity patterns and expression profiles in genome-wide studies. RESULTS: Here, we introduce an R package named dgfr, which estimates and enables the visualization of sequence divergence within gene families, as well as the visualization of secondary data such as gene expression. The package takes as input a multi-fasta file containing the coding sequences (CDS) or amino acid sequences from a multigene family, performs a pairwise alignment among all sequences, and estimates their distance, which is subjected to dimension reduction, optimal cluster determination, and gene assignment to each cluster. The result is a dataset that allows for the visualization of sequence divergence and expression within the gene family, an approximation of the number of clusters present in the family. CONCLUSIONS: dgfr provides a way to estimate and study the diversity of gene families, as well as visualize the dispersion and secondary profile of the sequences. The dgfr package is available at https://github.com/lailaviana/dgfr under the GPL-3 license.


Assuntos
Variação Genética , Família Multigênica , Software , Variação Genética/genética , Alinhamento de Sequência/métodos
2.
Genome Res ; 34(3): 441-453, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38604731

RESUMO

Aneuploidy is widely observed in both unicellular and multicellular eukaryotes, usually associated with adaptation to stress conditions. Chromosomal duplication stability is a tradeoff between the fitness cost of having unbalanced gene copies and the potential fitness gained from increased dosage of specific advantageous genes. Trypanosomatids, a family of protozoans that include species that cause neglected tropical diseases, are a relevant group to study aneuploidies. Their life cycle has several stressors that could select for different patterns of chromosomal duplications and/or losses, and their nearly universal use of polycistronic transcription increases their reliance on gene expansion/contraction, as well as post-transcriptional control as mechanisms for gene expression regulation. By evaluating the data from 866 isolates covering seven trypanosomatid genera, we have revealed that aneuploidy tolerance is an ancestral characteristic of trypanosomatids but has a reduced occurrence in a specific monophyletic clade that has undergone large genomic reorganization and chromosomal fusions. We have also identified an ancient chromosomal duplication that was maintained across these parasite's speciation, named collectively as the trypanosomatid ancestral supernumerary chromosome (TASC). TASC has most genes in the same coding strand, is expressed as a disomic chromosome (even having four copies), and has increased potential for functional variation, but it purges highly deleterious mutations more efficiently than other chromosomes. The evidence of stringent control over gene expression in this chromosome suggests that these parasites have adapted to mitigate the fitness cost associated with this ancient chromosomal duplication.


Assuntos
Aneuploidia , Duplicação Cromossômica , Regulação da Expressão Gênica , Genoma de Protozoário , Evolução Molecular , Trypanosomatina/genética , Filogenia
4.
Genomics ; 115(5): 110661, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37263313

RESUMO

We report the sequencing and assembly of the PH8 strain of Leishmania amazonensis one of the etiological agents of leishmaniasis. After combining data from long Pacbio reads, short Illumina reads and synteny with the Leishmania mexicana genome, the sequence of 34 chromosomes with 8317 annotated genes was generated. Multigene families encoding three virulence factors, A2, amastins and the GP63 metalloproteases, were identified and compared to their annotation in other Leishmania species. As they have been recently recognized as virulence factors essential for disease establishment and progression of the infection, we also identified 14 genes encoding proteins involved in parasite iron and heme metabolism and compared to genes from other Trypanosomatids. To follow these studies with a genetic approach to address the role of virulence factors, we tested two CRISPR-Cas9 protocols to generate L. amazonensis knockout cell lines, using the Miltefosine transporter gene as a proof of concept.


Assuntos
Leishmania mexicana , Leishmania , Leishmania mexicana/genética , Virulência/genética , Leishmania/genética , Genoma , Fatores de Virulência/metabolismo
5.
Parasit Vectors ; 16(1): 167, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217925

RESUMO

BACKGROUND: Chagas disease (CD), caused by the parasite Trypanosoma cruzi, is a serious public health concern in Latin America. Nifurtimox and benznidazole (BZ), the only two drugs currently approved for the treatment of CD, have very low efficacies in the chronic phase of the disease and several toxic side effects. Trypanosoma cruzi strains that are naturally resistant to both drugs have been reported. We performed a comparative transcriptomic analysis of wild-type and BZ-resistant T. cruzi populations using high-throughput RNA sequencing to elucidate the metabolic pathways related to clinical drug resistance and identify promising molecular targets for the development of new drugs for treating CD. METHODS: All complementary DNA (cDNA) libraries were constructed from the epimastigote forms of each line, sequenced and analysed using the Prinseq and Trimmomatic tools for the quality analysis, STAR as the aligner for mapping the reads against the reference genome (T. cruzi Dm28c-2018), the Bioconductor package EdgeR for statistical analysis of differential expression and the Python-based library GOATools for the functional enrichment analysis. RESULTS: The analytical pipeline with an adjusted P-value of < 0.05 and fold-change > 1.5 identified 1819 transcripts that were differentially expressed (DE) between wild-type and BZ-resistant T. cruzi populations. Of these, 1522 (83.7%) presented functional annotations and 297 (16.2%) were assigned as hypothetical proteins. In total, 1067 transcripts were upregulated and 752 were downregulated in the BZ-resistant T. cruzi population. Functional enrichment analysis of the DE transcripts identified 10 and 111 functional categories enriched for the up- and downregulated transcripts, respectively. Through functional analysis we identified several biological processes potentially associated with the BZ-resistant phenotype: cellular amino acid metabolic processes, translation, proteolysis, protein phosphorylation, RNA modification, DNA repair, generation of precursor metabolites and energy, oxidation-reduction processes, protein folding, purine nucleotide metabolic processes and lipid biosynthetic processes. CONCLUSIONS: The transcriptomic profile of T. cruzi revealed a robust set of genes from different metabolic pathways associated with the BZ-resistant phenotype, proving that T. cruzi resistance mechanisms are multifactorial and complex. Biological processes associated with parasite drug resistance include antioxidant defenses and RNA processing. The identified transcripts, such as ascorbate peroxidase (APX) and iron superoxide dismutase (Fe-SOD), provide important information on the resistant phenotype. These DE transcripts can be further evaluated as molecular targets for new drugs against CD.


Assuntos
Doença de Chagas , Nitroimidazóis , Tripanossomicidas , Trypanosoma cruzi , Humanos , Tripanossomicidas/farmacologia , Transcriptoma , Perfilação da Expressão Gênica , Doença de Chagas/tratamento farmacológico , Nitroimidazóis/farmacologia
6.
Microbiol Resour Announc ; 12(6): e0023523, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37162354

RESUMO

Avian metapneumovirus (aMPV) causes a highly contagious upper respiratory and reproductive disease in chickens, turkeys, and ducks. Here, complete genome sequences of aMPV-B vaccine strains BR/1890/E1/19 (PL21, Nemovac; Boehringer Ingelheim Animal Health, Brazil) and BR/1891/E2/19 (1062; Hipraviar, France) were sequenced and compared with the pathogenic field strain VCO3/60616.

7.
PLoS Pathog ; 19(3): e1011230, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36940219

RESUMO

In Brazil, Leishmania braziliensis is the main causative agent of the neglected tropical disease, cutaneous leishmaniasis (CL). CL presents on a spectrum of disease severity with a high rate of treatment failure. Yet the parasite factors that contribute to disease presentation and treatment outcome are not well understood, in part because successfully isolating and culturing parasites from patient lesions remains a major technical challenge. Here we describe the development of selective whole genome amplification (SWGA) for Leishmania and show that this method enables culture-independent analysis of parasite genomes obtained directly from primary patient skin samples, allowing us to circumvent artifacts associated with adaptation to culture. We show that SWGA can be applied to multiple Leishmania species residing in different host species, suggesting that this method is broadly useful in both experimental infection models and clinical studies. SWGA carried out directly on skin biopsies collected from patients in Corte de Pedra, Bahia, Brazil, showed extensive genomic diversity. Finally, as a proof-of-concept, we demonstrated that SWGA data can be integrated with published whole genome data from cultured parasite isolates to identify variants unique to specific geographic regions in Brazil where treatment failure rates are known to be high. SWGA provides a relatively simple method to generate Leishmania genomes directly from patient samples, unlocking the potential to link parasite genetics with host clinical phenotypes.


Assuntos
Genoma de Protozoário , Leishmaniose Cutânea , Parasitologia , Pele , Genoma de Protozoário/genética , Humanos , Genética Populacional , Pele/parasitologia , Brasil , Leishmaniose Cutânea/parasitologia , Parasitologia/métodos , Leishmania braziliensis/genética
8.
Front Cell Infect Microbiol ; 13: 1102462, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36779182

RESUMO

Leishmania are kinetoplastid pathogens that cause leishmaniasis, a debilitating and potentially life-threatening infection if untreated. Unusually, Leishmania regulate their gene expression largely post-transcriptionally due to the arrangement of their coding genes into polycistronic transcription units that may contain 100s of functionally unrelated genes. Yet, Leishmania are capable of rapid and responsive changes in gene expression to challenging environments, often instead correlating with dynamic changes in their genome composition, ranging from chromosome and gene copy number variations to the generation of extrachromosomal DNA and the accumulation of point mutations. Typically, such events indicate genome instability in other eukaryotes, coinciding with genetic abnormalities, but for Leishmania, exploiting these products of genome instability can provide selectable substrates to catalyse necessary gene expression changes by modifying gene copy number. Unorthodox DNA replication, DNA repair, replication stress factors and DNA repeats are recognised in Leishmania as contributors to this intrinsic instability, but how Leishmania regulate genome plasticity to enhance fitness whilst limiting toxic under- or over-expression of co-amplified and co-transcribed genes is unclear. Herein, we focus on fresh, and detailed insights that improve our understanding of genome plasticity in Leishmania. Furthermore, we discuss emerging models and factors that potentially circumvent regulatory issues arising from polycistronic transcription. Lastly, we highlight key gaps in our understanding of Leishmania genome plasticity and discuss future studies to define, in higher resolution, these complex regulatory interactions.


Assuntos
Leishmania , Humanos , Leishmania/genética , Variações do Número de Cópias de DNA , Plásticos , Instabilidade Genômica , Expressão Gênica
9.
mBio ; 13(6): e0231922, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36264102

RESUMO

Repetitive elements cause assembly fragmentation in complex eukaryotic genomes, limiting the study of their variability. The genome of Trypanosoma cruzi, the parasite that causes Chagas disease, has a high repetitive content, including multigene families. Although many T. cruzi multigene families encode surface proteins that play pivotal roles in host-parasite interactions, their variability is currently underestimated, as their high repetitive content results in collapsed gene variants. To estimate sequence variability and copy number variation of multigene families, we developed a read-based approach that is independent of gene-specific read mapping and de novo assembly. This methodology was used to estimate the copy number and variability of MASP, TcMUC, and Trans-Sialidase (TS), the three largest T. cruzi multigene families, in 36 strains, including members of all six parasite discrete typing units (DTUs). We found that these three families present a specific pattern of variability and copy number among the distinct parasite DTUs. Inter-DTU hybrid strains presented a higher variability of these families, suggesting that maintaining a larger content of their members could be advantageous. In addition, in a chronic murine model and chronic Chagasic human patients, the immune response was focused on TS antigens, suggesting that targeting TS conserved sequences could be a potential avenue to improve diagnosis and vaccine design against Chagas disease. Finally, the proposed approach can be applied to study multicopy genes in any organism, opening new avenues to access sequence variability in complex genomes. IMPORTANCE Sequences that have several copies in a genome, such as multicopy-gene families, mobile elements, and microsatellites, are among the most challenging genomic segments to study. They are frequently underestimated in genome assemblies, hampering the correct assessment of these important players in genome evolution and adaptation. Here, we developed a new methodology to estimate variability and copy numbers of repetitive genomic regions and employed it to characterize the T. cruzi multigene families MASP, TcMUC, and transsialidase (TS), which are important virulence factors in this parasite. We showed that multigene families vary in sequence and content among the parasite's lineages, whereas hybrid strains have a higher sequence variability that could be advantageous to the parasite's survivability. By identifying conserved sequences within multigene families, we showed that the mammalian host immune response toward these multigene families is usually focused on the TS multigene family. These TS conserved and immunogenic peptides can be explored in future works as diagnostic targets or vaccine candidates for Chagas disease. Finally, this methodology can be easily applied to any organism of interest, which will aid in our understanding of complex genomic regions.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Humanos , Animais , Camundongos , Trypanosoma cruzi/genética , Variações do Número de Cópias de DNA , Genoma de Protozoário , Serina Proteases Associadas a Proteína de Ligação a Manose/genética , Família Multigênica , Doença de Chagas/parasitologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mamíferos/genética
10.
PLoS Negl Trop Dis ; 16(10): e0010845, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36260546

RESUMO

Chagas disease, caused by the protozoan Trypanosoma cruzi, is a serious chronic parasitic disease, currently treated with Nifurtimox (NFX) and Benznidazole (BZ). In addition to high toxicity, these drugs have low healing efficacy, especially in the chronic phase of the disease. The existence of drug-resistant T. cruzi strains and the occurrence of cross-resistance between BZ and NFX have also been described. In this context, it is urgent to study the metabolism of these drugs in T. cruzi, to better understand the mechanisms of resistance. Prostaglandin F2α synthase (PGFS) is an enzyme that has been correlated with parasite resistance to BZ, but the mechanism by which resistance occurs is still unclear. Our results show that the genome of the CL Brener clone of T. cruzi, contains five PGFS sequences and three potential pseudogenes. Using CRISPR/Cas9 we generated knockout cell lines in which all PGFS sequences were disrupted, as shown by PCR and western blotting analyses. The PGFS deletion did not alter the growth of the parasites or their susceptibility to BZ and NFX when compared to wild-type (WT) parasites. Interestingly, NTR-1 transcripts were shown to be upregulated in ΔPGFS mutants. Furthermore, the ΔPGFS parasites were 1.6 to 1.7-fold less tolerant to oxidative stress generated by menadione, presented lower levels of lipid bodies than the control parasites during the stationary phase, and were less infective than control parasites.


Assuntos
Doença de Chagas , Tripanossomicidas , Trypanosoma cruzi , Humanos , Nifurtimox/uso terapêutico , Dinoprosta/uso terapêutico , Tripanossomicidas/uso terapêutico , Vitamina K 3/uso terapêutico , Doença de Chagas/parasitologia , Estresse Oxidativo
11.
mBio ; 13(6): e0206822, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36222512

RESUMO

Visceral leishmaniasis (VL) is a potentially fatal disease caused mainly by Leishmania infantum in South America and Leishmania donovani in Asia and Africa. Disease outcomes have been associated with patient genotype, nutrition, age, sex, comorbidities, and coinfections. In this study, we examine the effects of parasite genetic variation on VL disease severity in Brazil. We collected and sequenced the genomes of 109 L. infantum isolates from patients in northeastern Brazil and retrieved matching patient clinical data from medical records, including mortality, sex, HIV coinfection, and laboratory data (creatinine, hemoglobin, and leukocyte and platelet counts). We identified genetic differences between parasite isolates, including single nucleotide polymorphisms (SNPs), small insertions/deletions (indels), and variations in genic, intergenic, and chromosome copy numbers (copy number variants [CNVs]). To describe associations between the parasite genotypes and clinical outcomes, we applied quantitative genetics methods of heritability and genome-wide association studies (GWAS), treating clinical outcomes as traits that may be influenced by parasite genotype. Multiple aspects of the genetic analysis indicate that parasite genotype affects clinical outcomes. We estimate that parasite genotype explains 83% chance of mortality (narrow-sense heritability [h2] = 0.83 ± 0.17) and has a significant relationship with patient sex (h2 = 0.60 ± 0.27). Impacts of parasite genotype on other clinical traits are lower (h2 ≤ 0.34). GWAS analysis identified multiple parasite genetic loci that were significantly associated with clinical outcomes; 17 CNVs were significantly associated with mortality, two with creatinine, and one with bacterial coinfection, jaundice, and HIV coinfection, and two SNPs/indels and six CNVs were associated with age, jaundice, HIV and bacterial coinfections, creatinine, and/or bleeding sites. Parasite genotype is an important factor in VL disease severity in Brazil. Our analysis indicates that specific genetic differences between parasites act as virulence factors, enhancing risks of severe disease and mortality. More detailed understanding of these virulence factors could be exploited for novel therapies. IMPORTANCE Multiple factors contribute to the risk of mortality from visceral leishmaniasis (VL), including, patient genotype, comorbidities, and nutrition. Many of these factors are influenced by socioeconomic biases. Our work suggests that the virulence of the infecting parasite is an important risk factor for mortality. We pinpoint some specific genomic markers that are associated with mortality, which can lead to a greater understanding of the molecular mechanisms that cause severe VL disease, to the identification of genetic markers for virulent parasites, and to the development of drug and vaccine therapies.


Assuntos
Coinfecção , Infecções por HIV , Leishmania infantum , Leishmaniose Visceral , Parasitos , Animais , Humanos , Leishmaniose Visceral/parasitologia , Parasitos/genética , Creatinina/farmacologia , Creatinina/uso terapêutico , Estudo de Associação Genômica Ampla , Genótipo , Fatores de Virulência , Brasil , Leishmania infantum/genética
12.
Microbes Infect ; 24(6-7): 104982, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35487471

RESUMO

Trypanosoma cruzi, the etiological agent of Chagas disease (CD), is a heterogeneous species with high genetic and phenotypic diversity. MASP is the second largest multigene family of T. cruzi. The high degree of polymorphism of the family associated with its location at the surface of infective forms of T. cruzi suggests that MASP participates in mechanisms of host-parasite interaction. In this work, MASP members were divided into 7 subgroups based on protein sequence similarity, and one representative member from each subgroup was chosen to be expressed recombinantly. Immunogenicity of recombinant MASP proteins (rMASP) was investigated using different sera panels from T. cruzi infected mice. To mimic a natural condition in which different MASP members are expressed at the same time in the parasite population, a multiplex bead-based flow cytometry assay was also standardized. Results showed that rMASPs are poorly recognized by sera from mice infected with Colombiana strain, whereas sera from mice infected with CL Brener and Y display high reactivity against the majority of rMASPs tested. Flow cytometry showed that MASP recognition profile changes 10 days after infection. Also, multiplex assay suggests that MASP M1 and M2 are more immunogenic than the other MASP members evaluated that may play an immunodominant role during infection.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Animais , Variação Antigênica , Doença de Chagas/parasitologia , Serina Proteases Associadas a Proteína de Ligação a Manose/genética , Serina Proteases Associadas a Proteína de Ligação a Manose/metabolismo , Camundongos , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/genética , Trypanosoma cruzi/metabolismo
13.
Front Cell Infect Microbiol ; 12: 760830, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35402315

RESUMO

Trypanosoma cruzi, the etiological agent of Chagas disease, exhibits extensive inter- and intrastrain genetic diversity. As we have previously described, there are some genetic differences between the parental G strain and its clone D11, which was isolated by the limiting dilution method and infection of cultured mammalian cells. Electrophoretic karyotyping and Southern blot hybridization of chromosomal bands with specific markers revealed chromosome length polymorphisms of small size with additional chromosomal bands in clone D11 and the maintenance of large syntenic groups. Both G strain and clone D11 belong to the T. cruzi lineage TcI. Here, we designed intraspecific array-based comparative genomic hybridization (aCGH) to identify chromosomal regions harboring copy-number variations between clone D11 and the G strain. DNA losses were more extensive than DNA gains in clone D11. Most alterations were flanked by repeated sequences from multigene families that could be involved in the duplication and deletion events. Several rearrangements were detected by chromoblot hybridization and confirmed by aCGH. We have integrated the information of genomic sequence data obtained by aCGH to the electrophoretic karyotype, allowing the reconstruction of possible recombination events that could have generated the karyotype of clone D11. These rearrangements may be explained by unequal crossing over between sister or homologous chromatids mediated by flanking repeated sequences and unequal homologous recombination via break-induced replication. The genomic changes detected by aCGH suggest the presence of a dynamic genome that responds to environmental stress by varying the number of gene copies and generating segmental aneuploidy.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Animais , Células Clonais , Hibridização Genômica Comparativa/métodos , DNA , Genoma de Protozoário , Mamíferos/genética , Trypanosoma cruzi/genética
14.
mBio ; 13(1): e0347821, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35073735

RESUMO

Trans-sialidases (TS) are unusual enzymes present on the surface of Trypanosoma cruzi, the causative agent of Chagas disease. Encoded by the largest gene family in the T. cruzi genome, only few members of the TS family have catalytic activity. Active trans-sialidases (aTS) are responsible for transferring sialic acid from host glycoconjugates to mucins, also present on the parasite surface. The existence of several copies of TS genes has impaired the use of reverse genetics to study this highly polymorphic gene family. Using CRISPR-Cas9, we generated aTS knockout cell lines displaying undetectable levels of TS activity, as shown by sialylation assays and labeling with antibodies that recognize sialic acid-containing mucins. In vitro infection assays showed that disruption of aTS genes does not affect the parasite's capacity to invade cells or to escape from the parasitophorous vacuole but resulted in impaired differentiation of amastigotes into trypomastigotes and parasite egress from the cell. When inoculated into mice, aTS mutants were unable to establish infection even in the highly susceptible gamma interferon (IFN-γ) knockout mice. Mice immunized with aTS mutants were fully protected against a challenge infection with the virulent T. cruzi Y strain. Altogether, our results confirmed the role of aTS as a T. cruzi virulence factor and indicated that aTS play a major role during the late stages of intracellular development and parasite egress. Notably, mutants lacking TS activity are completely avirulent in animal models of infection and may be used as a live attenuated vaccine against Chagas disease. IMPORTANCE Trypanosoma cruzi is the causative agent of Chagas disease, a neglected tropical disease that affects approximately 6 to 8 million people and for which there is no effective treatment or vaccine. The parasite expresses a family of surface proteins, named trans-sialidases, responsible for transferring sialic acid from host glycoconjugates to parasite mucins. Although recognized as a main virulence factor, the multiple roles of these proteins during infection have not yet been fully characterized, mainly because the presence of several copies of aTS genes has impaired their study using reverse genetics. By applying CRISPR-Cas9, we generated aTS knockout parasites and showed that, although aTS parasite mutants were able to infect cells in vitro, they have an impaired capacity to egress from the infected cell. Importantly, aTS mutants lost the ability to cause infection in vivo but provided full protection against a challenge infection with a virulent strain.


Assuntos
Doença de Chagas , Parasitos , Trypanosoma cruzi , Animais , Camundongos , Trypanosoma cruzi/genética , Parasitos/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Glicoproteínas/metabolismo , Doença de Chagas/parasitologia , Neuraminidase , Mucinas/metabolismo , Fatores de Virulência , Mamíferos/metabolismo
15.
PLoS One ; 16(11): e0258637, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34727117

RESUMO

Peptide-based vaccines have demonstrated to be an important way to induce long-lived immune responses and, therefore, a promising strategy in the rational of vaccine development. As to malaria, among the classic vaccine targets, the Apical membrane antigen (AMA-1) was proven to have important B cell epitopes that can induce specific immune response and, hence, became key players for a vaccine approach. The peptides selection was carried out using a bioinformatic approach based on Hidden Markov Models profiles of known antigens and propensity scale methods based on hydrophilicity and secondary structure prediction. The antigenicity of the selected B-cell peptides was assessed by multiple serological assays using sera from acute P.vivax infected subjects. The synthetic peptides were recognized by 45.5%, 48.7% and 32.2% of infected subjects for peptides I, II and III respectively. Moreover, when synthetized together (tripeptide), the reactivity increases up to 62%, which is comparable to the reactivity found against the whole protein PvAMA-1 (57%). Furthermore, IgG reactivity against the tripeptide after depletion was reduced by 42%, indicating that these epitopes may be responsible for a considerable part of the protein immunogenicity. These results represent an excellent perspective regarding future chimeric vaccine constructions that may come to contemplate several targets with the potential to generate the robust and protective immune response that a vivax malaria vaccine needs to succeed.


Assuntos
Antígenos de Protozoários/imunologia , Epitopos de Linfócito B/imunologia , Vacinas Antimaláricas/imunologia , Proteínas de Membrana/imunologia , Peptídeos/imunologia , Plasmodium vivax/imunologia , Proteínas de Protozoários/imunologia , Adulto , Sequência de Aminoácidos , Formação de Anticorpos/imunologia , Estudos de Casos e Controles , Feminino , Humanos , Epitopos Imunodominantes/imunologia , Imunoglobulina G/imunologia , Malária Vivax/epidemiologia , Malária Vivax/imunologia , Masculino , Pessoa de Meia-Idade , Peptídeos/química , Estrutura Secundária de Proteína
16.
PLoS Negl Trop Dis ; 15(9): e0009759, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34534217

RESUMO

Visceral leishmaniasis (VL) is caused by protozoa belonging to the Leishmania donovani complex and is considered the most serious and fatal form among the different types of leishmaniasis, if not early diagnosed and treated. Among the measures of disease control stand out the management of infected dogs and the early diagnosis and appropriate treatment of human cases. Several antigens have been characterized for use in the VL diagnosis, among them are the recombinant kinesin-derived antigens from L. infantum, as rK39 and rKDDR. The main difference between these antigens is the size of the non-repetitive kinesin region and the number of repetitions of the 39 amino acid degenerate motif (6.5 and 8.5 repeats in rK39 and rKDDR, respectively). This repetitive region has a high antigenicity score. To evaluate the effect of increasing the number of repeats on diagnostic performance, we designed the rKDDR-plus antigen, containing 15.3 repeats of the 39 amino acid degenerate motif, besides the absence of the non-repetitive portion from L. infantum kinesin. Its performance was evaluated by enzyme-linked immunosorbent assay (ELISA) and rapid immunochromatographic test (ICT), and compared with the kinesin-derived antigens (rKDDR and rK39). In ELISA with human sera, all recombinant antigens had a sensitivity of 98%, whereas the specificity for rKDDR-plus, rKDDR and rK39 was 100%, 96% and 71%, respectively. When evaluated canine sera, the ELISA sensitivity was 97% for all antigens, and the specificity for rKDDR-plus, rKDDR and rK39 was 98%, 91% and 83%, respectively. Evaluation of the ICT/rKDDR-plus, using human sera, showed greater diagnostic sensitivity (90%) and specificity (100%), when compared to the IT LEISH (79% and 98%, respectively), which is based on the rK39 antigen. These results suggest that the increased presence of repetitive motifs in the rKDDR-plus protein improves the diagnostic performance of serological tests by increasing the specificity and accuracy of the diagnosis.


Assuntos
Antígenos de Protozoários/sangue , Leishmania infantum , Leishmaniose Visceral/veterinária , Proteínas de Protozoários/genética , Testes Sorológicos/veterinária , Animais , Doenças do Cão , Cães , Humanos , Leishmaniose Visceral/diagnóstico , Leishmaniose Visceral/parasitologia , Modificação Traducional de Proteínas , Proteínas de Protozoários/química , Proteínas Recombinantes , Sensibilidade e Especificidade , Testes Sorológicos/métodos , Zoonoses
17.
Sci Rep ; 11(1): 18231, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521898

RESUMO

Cruzipains are the main papain-like cysteine proteases of Trypanosoma cruzi, the protozoan parasite that causes Chagas disease. Encoded by a multigenic family, previous studies have estimated the presence of dozens of copies spread over multiple chromosomes in different parasite strains. Here, we describe the complete gene repertoire of cruzipain in three parasite strains, their genomic organization, and expression pattern throughout the parasite life cycle. Furthermore, we have analyzed primary sequence variations among distinct family members as well as structural differences between the main groups of cruzipains. Based on phylogenetic inferences and residue positions crucial for enzyme function and specificity, we propose the classification of cruzipains into two families (I and II), whose genes are distributed in two or three separate clusters in the parasite genome, according with the strain. Family I comprises nearly identical copies to the previously characterized cruzipain 1/cruzain, whereas Family II encompasses three structurally distinct sub-types, named cruzipain 2, cruzipain 3, and cruzipain 4. RNA-seq data derived from the CL Brener strain indicates that Family I genes are mainly expressed by epimastigotes, whereas trypomastigotes mainly express Family II genes. Significant differences in the active sites among the enzyme sub-types were also identified, which may play a role in their substrate selectivity and impact their inhibition by small molecules.


Assuntos
Domínio Catalítico , Cisteína Endopeptidases/genética , Proteínas de Protozoários/genética , Trypanosoma cruzi/genética , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Estágios do Ciclo de Vida/genética , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/enzimologia , Trypanosoma cruzi/crescimento & desenvolvimento
18.
Microorganisms ; 9(8)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34442625

RESUMO

The relatively high post-treatment relapse rates of paromomycin (PMM) in visceral leishmaniasis treatment and the swift emergence of experimental drug resistance challenge its broad application and urge for rational use and monitoring of resistance. However, no causal molecular mechanisms to Leishmania PMM resistance have been identified so far. To gain insights into potential resistance mechanisms, twelve experimentally selected Leishmania donovani clonal lines and the non-cloned preselection population, with variable degrees of PMM resistance, were subjected to whole genome sequencing. To identify genomic variations potentially associated with resistance, SNPs, Indels, chromosomal somy and gene copy number variations were compared between the different parasite lines. A total of 11 short nucleotide variations and the copy number alterations in 39 genes were correlated to PMM resistance. Some of the identified genes are involved in transcription, translation and protein turn-over (transcription elongation factor-like protein, RNA-binding protein, ribosomal protein L1a, 60S ribosomal protein L6, eukaryotic translation initiation factor 4E-1, proteasome regulatory non-ATP-ase subunit 3), virulence (major surface protease gp63, protein-tyrosine phosphatase 1-like protein), mitochondrial function (ADP/ATP mitochondrial carrier-like protein), signaling (phosphatidylinositol 3-related kinase, protein kinase putative and protein-tyrosine phosphatase 1-like protein) and vesicular trafficking (ras-related protein RAB1). These results indicate that, in Leishmania, the aminoglycoside PMM affects protein translational processes and underlines the complex and probably multifactorial origin of resistance.

19.
Bioinformatics ; 37(24): 4826-4834, 2021 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-34289025

RESUMO

MOTIVATION: In silico identification of linear B-cell epitopes represents an important step in the development of diagnostic tests and vaccine candidates, by providing potential high-probability targets for experimental investigation. Current predictive tools were developed under a generalist approach, training models with heterogeneous datasets to develop predictors that can be deployed for a wide variety of pathogens. However, continuous advances in processing power and the increasing amount of epitope data for a broad range of pathogens indicate that training organism or taxon-specific models may become a feasible alternative, with unexplored potential gains in predictive performance. RESULTS: This article shows how organism-specific training of epitope prediction models can yield substantial performance gains across several quality metrics when compared to models trained with heterogeneous and hybrid data, and with a variety of widely used predictors from the literature. These results suggest a promising alternative for the development of custom-tailored predictive models with high predictive power, which can be easily implemented and deployed for the investigation of specific pathogens. AVAILABILITY AND IMPLEMENTATION: The data underlying this article, as well as the full reproducibility scripts, are available at https://github.com/fcampelo/OrgSpec-paper. The R package that implements the organism-specific pipeline functions is available at https://github.com/fcampelo/epitopes. SUPPLEMENTARY INFORMATION: Supplementary materials are available at Bioinformatics online.


Assuntos
Mapeamento de Epitopos , Epitopos de Linfócito B , Aprendizado de Máquina , Análise de Sequência de Proteína , Humanos , Animais , Conjuntos de Dados como Assunto , Especificidade da Espécie , Análise de Sequência de Proteína/métodos , Mapeamento de Epitopos/métodos
20.
Int J Parasitol ; 51(12): 1047-1057, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34329650

RESUMO

Leishmania (Leishmania) major is an important agent of cutaneous leishmaniasis, having as a vector sandflies belonging to the genus Phlebotomus. Although this species has been described as restricted to the Old World, parasites similar to L. major have been isolated from South American patients who have never travelled abroad. These parasites were named "L. major-like", and several studies have been carried out to characterise them biochemically, molecularly, and biologically. However, the phylogenetic origin of these isolates is still unknown. In the present study we characterised three L. major-like isolates, named BH49, BH121 and BH129, using comparative genomics approaches. We evaluated the presence of gene and segmental duplications/deletions and the presence of aneuploidies that could explain the differences in infectivity observed in the BH49 and BH121 isolates. All isolates presented a pattern of mosaic aneuploidy and gene copy number variation, which are common in the genus Leishmania. Virulence factors such as phosphatases and peptidases were found to have increased gene copy numbers in the infective isolate, which could explain the difference in infectivity previously observed between BH121 and BH49. Phylogenetic analyses revealed that BH49, BH121 and BH129 L. major-like grouped with L. major isolates, and suggest they were imported from the Old World in at least two independent events. We suggest that new epidemiological inquiries should also evaluate L. major infections in South America, to assess the epidemiological importance of this species in the New World.


Assuntos
Leishmania major , Leishmaniose Cutânea , Animais , Brasil , Variações do Número de Cópias de DNA , Genômica , Humanos , Leishmania major/genética , Leishmaniose Cutânea/epidemiologia , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...