Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Res Commun ; 3(7): 1200-1211, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37441266

RESUMO

The tumor suppressor TP53 is the most frequently mutated gene in cancer and is mutationally inactivated in 50% of sporadic tumors. Inactivating mutations in TP53 also occur in Li Fraumeni syndrome (LFS). In addition to germline mutations in TP53 in LFS that completely inactivate this protein, there are many more germline mutant forms of TP53 in human populations that partially inactivate this protein: we call these partially inactivating mutations "hypomorphs." One of these hypomorphs is a SNP that exists in 6%-10% of Africans and 1%-2% of African Americans, which changes proline at amino acid 47 to serine (Pro47Ser; P47S). We previously showed that the P47S variant of p53 is intrinsically impaired for tumor suppressor function, and that this SNP is associated with increased cancer risk in mice and humans. Here we show that this SNP also influences the tumor microenvironment, and the immune microenvironment profile in P47S mice is more protumorigenic. At basal levels, P47S mice show impaired memory T-cell formation and function, along with increased anti-inflammatory (so-called "M2") macrophages. We show that in tumor-bearing P47S mice, there is an increase in immunosuppressive myeloid-derived suppressor cells and decreased numbers of activated dendritic cells, macrophages, and B cells, along with evidence for increased T-cell exhaustion in the tumor microenvironment. Finally, we show that P47S mice demonstrate an incomplete response to anti-PD-L1 therapy. Our combined data suggest that the African-centric P47S variant leads to both intrinsic and extrinsic defects in tumor suppression. Significance: Findings presented here show that the P47S variant of TP53 influences the immune microenvironment, and the immune response to cancer. This is the first time that a naturally occurring genetic variant of TP53 has been shown to negatively impact the immune microenvironment and the response to immunotherapy.


Assuntos
Síndrome de Li-Fraumeni , Proteína Supressora de Tumor p53 , Humanos , Camundongos , Animais , Proteína Supressora de Tumor p53/genética , Inibidores de Checkpoint Imunológico , Síndrome de Li-Fraumeni/genética , Genes p53 , Mutação em Linhagem Germinativa , Microambiente Tumoral/genética
2.
Front Immunol ; 12: 791095, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35003110

RESUMO

Antibody secreting plasma cells are made in response to a variety of pathogenic and commensal microbes. While all plasma cells express a core gene transcription program that allows them to secrete large quantities of immunoglobulin, unique transcriptional profiles are linked to plasma cells expressing different antibody isotypes. IgA expressing plasma cells are generally thought of as short-lived in mucosal tissues and they have been understudied in systemic sites like the bone marrow. We find that IgA+ plasma cells in both the small intestine lamina propria and the bone marrow are long-lived and transcriptionally related compared to IgG and IgM expressing bone marrow plasma cells. IgA+ plasma cells show signs of shared clonality between the gut and bone marrow, but they do not recirculate at a significant rate and are found within bone marrow plasma cells niches. These data suggest that systemic and mucosal IgA+ plasma cells are from a common source, but they do not migrate between tissues. However, comparison of the plasma cells from the small intestine lamina propria to the bone marrow demonstrate a tissue specific gene transcription program. Understanding how these tissue specific gene networks are regulated in plasma cells could lead to increased understanding of the induction of mucosal versus systemic antibody responses and improve vaccine design.


Assuntos
Células da Medula Óssea/metabolismo , Imunoglobulina A Secretora/metabolismo , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Intestinos/metabolismo , Plasmócitos/metabolismo , Animais , Células da Medula Óssea/imunologia , Sobrevivência Celular , Microambiente Celular , Regulação da Expressão Gênica , Imunidade nas Mucosas , Imunoglobulina A Secretora/genética , Imunoglobulina A Secretora/imunologia , Mucosa Intestinal/imunologia , Intestino Delgado/imunologia , Intestinos/imunologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Parabiose , Fenótipo , Plasmócitos/imunologia , Fatores de Tempo , Transcrição Gênica , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...