Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 11(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38534508

RESUMO

The implementation of three-dimensional tissue engineering concurrently with stem cell technology holds great promise for in vitro research in pharmacology and toxicology and modeling cardiac diseases, particularly for rare genetic and pediatric diseases for which animal models, immortal cell lines, and biopsy samples are unavailable. It also allows for a rapid assessment of phenotype-genotype relationships and tissue response to pharmacological manipulation. Mutations in the TSC1 and TSC2 genes lead to dysfunctional mTOR signaling and cause tuberous sclerosis complex (TSC), a genetic disorder that affects multiple organ systems, principally the brain, heart, skin, and kidneys. Here we differentiated healthy (CC3) and tuberous sclerosis (TSP8-15) human induced pluripotent stem cells (hiPSCs) into cardiomyocytes to create engineered cardiac tissue constructs (ECTCs). We investigated and compared their mechano-elastic properties and gene expression and assessed the effects of rapamycin, a potent inhibitor of the mechanistic target of rapamycin (mTOR). The TSP8-15 ECTCs had increased chronotropy compared to healthy ECTCs. Rapamycin induced positive inotropic and chronotropic effects (i.e., increased contractility and beating frequency, respectively) in the CC3 ECTCs but did not cause significant changes in the TSP8-15 ECTCs. A differential gene expression analysis revealed 926 up- and 439 down-regulated genes in the TSP8-15 ECTCs compared to their healthy counterparts. The application of rapamycin initiated the differential expression of 101 and 31 genes in the CC3 and TSP8-15 ECTCs, respectively. A gene ontology analysis showed that in the CC3 ECTCs, the positive inotropic and chronotropic effects of rapamycin correlated with positively regulated biological processes, which were primarily related to the metabolism of lipids and fatty and amino acids, and with negatively regulated processes, which were predominantly associated with cell proliferation and muscle and tissue development. In conclusion, this study describes for the first time an in vitro TSC cardiac tissue model, illustrates the response of normal and TSC ECTCs to rapamycin, and provides new insights into the mechanisms of TSC.

2.
PLoS Biol ; 20(5): e3001624, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35617197

RESUMO

Test compounds used on in vitro model systems are conventionally delivered to cell culture wells as fixed concentration bolus doses; however, this poorly replicates the pharmacokinetic (PK) concentration changes seen in vivo and reduces the predictive value of the data. Herein, proof-of-concept experiments were performed using a novel microfluidic device, the Microformulator, which allows in vivo like PK profiles to be applied to cells cultured in microtiter plates and facilitates the investigation of the impact of PK on biological responses. We demonstrate the utility of the device in its ability to reproduce in vivo PK profiles of different oncology compounds over multiweek experiments, both as monotherapy and drug combinations, comparing the effects on tumour cell efficacy in vitro with efficacy seen in in vivo xenograft models. In the first example, an ERK1/2 inhibitor was tested using fixed bolus dosing and Microformulator-replicated PK profiles, in 2 cell lines with different in vivo sensitivities. The Microformulator-replicated PK profiles were able to discriminate between cell line sensitivities, unlike the conventional fixed bolus dosing. In a second study, murine in vivo PK profiles of multiple Poly(ADP-Ribose) Polymerase 1/2 (PARP) and DNA-dependent protein kinase (DNA-PK) inhibitor combinations were replicated in a FaDu cell line resulting in a reduction in cell growth in vitro with similar rank ordering to the in vivo xenograft model. Additional PK/efficacy insight into theoretical changes to drug exposure profiles was gained by using the Microformulator to expose FaDu cells to the DNA-PK inhibitor for different target coverage levels and periods of time. We demonstrate that the Microformulator enables incorporating PK exposures into cellular assays to improve in vitro-in vivo translation understanding for early therapeutic insight.


Assuntos
Técnicas de Cultura de Células , Microfluídica , Animais , DNA , Humanos , Camundongos , Modelos Biológicos
3.
J Neuroinflammation ; 13(1): 306, 2016 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-27955696

RESUMO

BACKGROUND: Understanding blood-brain barrier responses to inflammatory stimulation (such as lipopolysaccharide mimicking a systemic infection or a cytokine cocktail that could be the result of local or systemic inflammation) is essential to understanding the effect of inflammatory stimulation on the brain. It is through the filter of the blood-brain barrier that the brain responds to outside influences, and the blood-brain barrier is a critical point of failure in neuroinflammation. It is important to note that this interaction is not a static response, but one that evolves over time. While current models have provided invaluable information regarding the interaction between cytokine stimulation, the blood-brain barrier, and the brain, these approaches-whether in vivo or in vitro-have often been only snapshots of this complex web of interactions. METHODS: We utilize new advances in microfluidics, organs-on-chips, and metabolomics to examine the complex relationship of inflammation and its effects on blood-brain barrier function ex vivo and the metabolic consequences of these responses and repair mechanisms. In this study, we pair a novel dual-chamber, organ-on-chip microfluidic device, the NeuroVascular Unit, with small-volume cytokine detection and mass spectrometry analysis to investigate how the blood-brain barrier responds to two different but overlapping drivers of neuroinflammation, lipopolysaccharide and a cytokine cocktail of IL-1ß, TNF-α, and MCP1,2. RESULTS: In this study, we show that (1) during initial exposure to lipopolysaccharide, the blood-brain barrier is compromised as expected, with increased diffusion and reduced presence of tight junctions, but that over time, the barrier is capable of at least partial recovery; (2) a cytokine cocktail also contributes to a loss of barrier function; (3) from this time-dependent cytokine activation, metabolic signature profiles can be obtained for both the brain and vascular sides of the blood-brain barrier model; and (4) collectively, we can use metabolite analysis to identify critical pathways in inflammatory response. CONCLUSIONS: Taken together, these findings present new data that allow us to study the initial effects of inflammatory stimulation on blood-brain barrier disruption, cytokine activation, and metabolic pathway changes that drive the response and recovery of the barrier during continued inflammatory exposure.


Assuntos
Barreira Hematoencefálica/imunologia , Barreira Hematoencefálica/metabolismo , Encéfalo/imunologia , Encéfalo/metabolismo , Citocinas/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Claudina-5/metabolismo , Citocinas/farmacologia , Relação Dose-Resposta a Droga , Humanos , Interleucina-1beta/farmacologia , Dispositivos Lab-On-A-Chip , Lipopolissacarídeos/farmacologia , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Modelos Biológicos , Transporte Proteico/efeitos dos fármacos , Junções Íntimas/efeitos dos fármacos , Fatores de Tempo , Fator de Necrose Tumoral alfa/farmacologia , Proteína da Zônula de Oclusão-1/metabolismo
4.
Biomicrofluidics ; 9(5): 054124, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26576206

RESUMO

The blood-brain barrier (BBB) is a critical structure that serves as the gatekeeper between the central nervous system and the rest of the body. It is the responsibility of the BBB to facilitate the entry of required nutrients into the brain and to exclude potentially harmful compounds; however, this complex structure has remained difficult to model faithfully in vitro. Accurate in vitro models are necessary for understanding how the BBB forms and functions, as well as for evaluating drug and toxin penetration across the barrier. Many previous models have failed to support all the cell types involved in the BBB formation and/or lacked the flow-created shear forces needed for mature tight junction formation. To address these issues and to help establish a more faithful in vitro model of the BBB, we have designed and fabricated a microfluidic device that is comprised of both a vascular chamber and a brain chamber separated by a porous membrane. This design allows for cell-to-cell communication between endothelial cells, astrocytes, and pericytes and independent perfusion of both compartments separated by the membrane. This NeuroVascular Unit (NVU) represents approximately one-millionth of the human brain, and hence, has sufficient cell mass to support a breadth of analytical measurements. The NVU has been validated with both fluorescein isothiocyanate (FITC)-dextran diffusion and transendothelial electrical resistance. The NVU has enabled in vitro modeling of the BBB using all human cell types and sampling effluent from both sides of the barrier.

5.
Rev Sci Instrum ; 86(6): 066106, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26133881

RESUMO

We present a simple apparatus for improved surface modification of polydimethylsiloxane (PDMS) microfluidic devices. A single treatment chamber for plasma activation and chemical/physical vapor deposition steps minimizes the time-dependent degradation of surface activation that is inherent in multi-chamber techniques. Contamination and deposition irregularities are also minimized by conducting plasma activation and treatment phases in the same vacuum environment. An inductively coupled plasma driver allows for interchangeable treatment chambers. Atomic force microscopy confirms that silane deposition on PDMS gives much better surface quality than standard deposition methods, which yield a higher local roughness and pronounced irregularities in the surface.


Assuntos
Dispositivos Lab-On-A-Chip , Dimetilpolisiloxanos , Desenho de Equipamento , Microscopia de Força Atômica , Microtecnologia/instrumentação , Microtecnologia/métodos , Silanos , Propriedades de Superfície , Vácuo
6.
Neurobiol Dis ; 78: 45-55, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25818006

RESUMO

Physical exercise may provide protection against the cognitive decline and neuropathology associated with Alzheimer's disease, although the mechanisms are not clear. In the present study, APP/PSEN1 double-transgenic and wild-type mice were allowed unlimited voluntary exercise for 7months. Consistent with previous reports, wheel-running improved cognition in the double-transgenic mice. Interestingly, the average daily distance run was strongly correlated with spatial memory in the water maze in wild-type mice (r(2)=.959), but uncorrelated in transgenics (r(2)=.013). Proteomics analysis showed that sedentary transgenic mice differed significantly from sedentary wild-types with respect to proteins involved in synaptic transmission, cytoskeletal regulation, and neurogenesis. When given an opportunity to exercise, the transgenics' deficiencies in cytoskeletal regulation and neurogenesis largely normalized, but abnormal synaptic proteins did not change. In contrast, exercise enhanced proteins associated with cytoskeletal regulation, oxidative phosphorylation, and synaptic transmission in wild-type mice. Soluble and insoluble Aß40 and Aß42 levels were significantly decreased in both cortex and hippocampus of active transgenics, suggesting that this may have played a role in the cognitive improvement in APP/PSEN1 mice. ß-secretase was significantly reduced in active APP/PSEN1 mice compared to sedentary controls, suggesting a mechanism for reduced Aß. Taken together, these data illustrate that exercise improves memory in wild-type and APP-overexpressing mice in fundamentally different ways.


Assuntos
Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Atividade Motora , Proteômica , Memória Espacial/fisiologia , Doença de Alzheimer/psicologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Ácido Aspártico Endopeptidases/metabolismo , Comportamento Animal , Hipocampo/metabolismo , Camundongos , Camundongos Transgênicos , Presenilina-1/genética , Presenilina-1/metabolismo
7.
Sens Actuators B Chem ; 204: 536-543, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25242863

RESUMO

Multianalyte microphysiometry is a powerful technique for studying cellular metabolic flux in real time. Monitoring several analytes concurrently in a number of individual chambers, however, requires specific instrumentation that is not available commercially in a single, compact, benchtop form at an affordable cost. We developed a multipotentiostat system capable of performing simultaneous amperometric and potentiometric measurements in up to eight individual chambers. The modular design and custom LabVIEW™ control software provide flexibility and allow for expansion and modification to suit different experimental conditions. Superior accuracy is achieved when operating the instrument in a standalone configuration; however, measurements performed in conjunction with a previously developed multianalyte microphysiometer have shown low levels of crosstalk as well. Calibrations and experiments with primary and immortalized cell cultures demonstrate the performance of the instrument and its capabilities.

8.
IEEE Trans Biomed Eng ; 60(3): 682-90, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23380852

RESUMO

The sophistication and success of recently reported microfabricated organs-on-chips and human organ constructs have made it possible to design scaled and interconnected organ systems that may significantly augment the current drug development pipeline and lead to advances in systems biology. Physiologically realistic live microHuman (µHu) and milliHuman (mHu) systems operating for weeks to months present exciting and important engineering challenges such as determining the appropriate size for each organ to ensure appropriate relative organ functional activity, achieving appropriate cell density, providing the requisite universal perfusion media, sensing the breadth of physiological responses, and maintaining stable control of the entire system, while maintaining fluid scaling that consists of ~5 mL for the mHu and ~5 µL for the µHu. We believe that successful mHu and µHu systems for drug development and systems biology will require low-volume microdevices that support chemical signaling, microfabricated pumps, valves and microformulators, automated optical microscopy, electrochemical sensors for rapid metabolic assessment, ion mobility-mass spectrometry for real-time molecular analysis, advanced bioinformatics, and machine learning algorithms for automated model inference and integrated electronic control. Toward this goal, we are building functional prototype components and are working toward top-down system integration.


Assuntos
Órgãos Artificiais , Engenharia Biomédica , Dispositivos Lab-On-A-Chip , Modelos Biológicos , Engenharia Biomédica/instrumentação , Engenharia Biomédica/métodos , Humanos , Biologia de Sistemas/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA