Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(5): e0303059, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38743751

RESUMO

Non-human primate (NHP)-based model systems are highly relevant for biomedical research. However, only few NHP cell lines are available and the generation of additional cell lines is an urgent need to help in the refinement and replacement of these models. Using lentiviral transduction of c-Fos, we established cell lines from the brain of rhesus macaques (Macaca mulatta). Transcriptome analysis revealed that these cell lines are closely related to astrocytes, which was confirmed by immunoblot and immunofluorescence microscopy detecting expression of the astrocyte marker glial fibrillary acidic protein (GFAP). Quantitative real-time PCR (qRT-PCR) demonstrated that major pathways of the interferon (IFN) system are intact. Using retroviral pseudotypes we found that the cell lines are susceptible to entry driven by the glycoproteins of vesicular stomatitis virus (VSV), lymphocytic choriomeningitis virus (LCMV) and to a lesser extent influenza A virus (IAV). Finally, these cells supported growth of Zika virus (ZIKV) and Papiine alphaherpesvirus 2 (PaHV2). In summary, we developed IFN-responsive cell lines from the rhesus macaque brain that allowed entry driven by several viral glycoproteins and were permissive to infection with ZIKV and a primate simplexvirus. These cell lines will be useful for efforts to analyze neurotropic viral infections in rhesus macaque models.


Assuntos
Astrócitos , Macaca mulatta , Animais , Astrócitos/virologia , Astrócitos/metabolismo , Linhagem Celular , Encéfalo/virologia , Encéfalo/metabolismo , Humanos
2.
Commun Chem ; 7(1): 46, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418529

RESUMO

Semi-rational enzyme engineering is a powerful method to develop industrial biocatalysts. Profiting from advances in molecular biology and bioinformatics, semi-rational approaches can effectively accelerate enzyme engineering campaigns. Here, we present the optimization of a ketoreductase from Sporidiobolus salmonicolor for the chemo-enzymatic synthesis of ipatasertib, a potent protein kinase B inhibitor. Harnessing the power of mutational scanning and structure-guided rational design, we created a 10-amino acid substituted variant exhibiting a 64-fold higher apparent kcat and improved robustness under process conditions compared to the wild-type enzyme. In addition, the benefit of algorithm-aided enzyme engineering was studied to derive correlations in protein sequence-function data, and it was found that the applied Gaussian processes allowed us to reduce enzyme library size. The final scalable and high performing biocatalytic process yielded the alcohol intermediate with ≥ 98% conversion and a diastereomeric excess of 99.7% (R,R-trans) from 100 g L-1 ketone after 30 h. Modelling and kinetic studies shed light on the mechanistic factors governing the improved reaction outcome, with mutations T134V, A238K, M242W and Q245S exerting the most beneficial effect on reduction activity towards the target ketone.

3.
PLoS One ; 18(5): e0284048, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37146034

RESUMO

Non-human primate (NHP)-based model systems faithfully reproduce various viral diseases including Ebola, influenza, AIDS and Zika. However, only a small number of NHP cell lines are available and generation of additional cell lines could help to refine these models. We immortalized rhesus macaque kidney cells by lentiviral transduction with a vector encoding telomerase reverse transcriptase (TERT) and report the generation of three TERT-immortalized cell lines derived from rhesus macaque kidney. Expression of the kidney podocyte marker podoplanin on these cells was demonstrated by flow cytometry. Quantitative real-time PCR (qRT-PCR) was employed to demonstrate induction of MX1 expression upon stimulation with interferon (IFN) or viral infection, suggesting a functional IFN system. Further, the cell lines were susceptible to entry driven by the glycoproteins of vesicular stomatitis virus, influenza A virus, Ebola virus, Nipah virus and Lassa virus as assessed by infection with retroviral pseudotypes. Finally, these cells supported growth of Zika virus and the primate simplexviruses Cercopithecine alphaherpesvirus 2 and Papiine alphaherpesvirus 2. In summary, we developed IFN-responsive rhesus macaque kidney cell lines that allowed entry driven by diverse viral glycoproteins and were permissive to infection with Zika virus and primate simplexviruses. These cell lines will be useful for efforts to analyze viral infections of the kidney in macaque models.


Assuntos
Doença pelo Vírus Ebola , Viroses , Vírus , Infecção por Zika virus , Zika virus , Animais , Macaca mulatta , Linhagem Celular , Glicoproteínas , Rim
4.
J Mol Biol ; 399(1): 1-8, 2010 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-20227420

RESUMO

Controlled activity of several kinesin motors is required for the proper assembly of the mitotic spindle. Eg5, a homotetrameric bipolar kinesin-5 from Xenopus laevis, can cross-link and slide anti-parallel microtubules apart by a motility mechanism comprising diffusional and directional modes. How this mechanism is regulated, possibly by the tail domains of the opposing motors, is poorly understood. In order to explore the basic unregulated kinesin-5 motor activity, we generated a stably dimeric kinesin-5 construct, Eg5Kin, consisting of the motor domain and neck linker of Eg5 and the neck coiled coil of Drosophila melanogaster kinesin-1 (DmKHC). In single-molecule motility assays, we found this chimera to be highly processive. In addition, we studied the effect of the kinesin-5-specific inhibitor monastrol using single-molecule fluorescence assays. We found that monastrol reduced the length of processive runs, but strikingly did not affect velocity. Quantitative analysis of monastrol dose dependence suggests that two bound monastrol molecules are required to be bound to an Eg5Kin dimer to terminate a run.


Assuntos
Proteínas de Drosophila/metabolismo , Cinesinas/metabolismo , Pirimidinas/farmacologia , Tionas/farmacologia , Proteínas de Xenopus/metabolismo , Sequência de Aminoácidos , Animais , Drosophila/metabolismo , Proteínas de Drosophila/genética , Cinesinas/genética , Microtúbulos/metabolismo , Dados de Sequência Molecular , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Xenopus/genética , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA