Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 12(2): 130-8, 1991 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-1878448

RESUMO

From in vitro experiments it is known that human endothelial cells show poor adhesion to hydrophobic polymers. The hydrophobicity of vascular prostheses manufactured from Teflon or Dacron may be the reason why endothelialization of these grafts does not occur after implantation in humans. We modified films of polytetrafluoroethylene (Teflon) by nitrogen plasma and oxygen plasma treatments to make the surfaces more hydrophilic. Depending on the plasma exposure time, modified polytetrafluoroethylene surfaces showed water-contact angles of 15-58 degrees, versus 96 degrees for unmodified polytetrafluoroethylene. ESCA measurements revealed incorporation of both nitrogen- and oxygen-containing groups into the polytetrafluoroethylene surfaces, dependent on the plasma composition and exposure time. The thickness of the modified surface layer was approximately 1 nm. The adhesion of cultured human endothelial cells from 20% human serum-containing culture medium to modified polytetrafluoroethylene surfaces with contact angles of 20-45 degrees led to the formation of a monolayer of cells, which was similar to the one formed on tissue culture polystyrene, the reference surface. This was not the case when endothelial cells were seeded upon unmodified polytetrafluoroethylene. Surface-modified expanded polytetrafluoroethylene prosthesis material (GORE TEX soft tissue) also showed adhesion of endothelial cells comparable to cell adhesion to the reference surface. The amounts of serum proteins, including fibronectin, adsorbed from serum-containing medium to modified polytetrafluoroethylene surfaces were larger than those adsorbed to unmodified polytetrafluoroethylene. Moreover, the modified surfaces probably allow the exchange of adsorbed serum proteins with cellular fibronectin.


Assuntos
Materiais Biocompatíveis , Proteínas Sanguíneas/metabolismo , Endotélio Vascular/metabolismo , Politetrafluoretileno , Adsorção , Adesão Celular , Humanos , Técnicas In Vitro , Nitrogênio/química , Oxigênio/química , Politetrafluoretileno/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA