Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 20(5): 3663-3672, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32320257

RESUMO

Most of existing solar thermal technologies require highly concentrated solar power to operate in the temperature range 300-600 °C. Here, thin films of refractory plasmonic TiN cylindrical nanocavities manufactured via flexible and scalable process are presented. The fabricated TiN films show polarization-insensitive 95% broadband absorption in the visible and near-infrared spectral ranges and act as plasmonic "nanofurnaces" capable of reaching temperatures above 600 °C under moderately concentrated solar irradiation (∼20 Suns). The demonstrated structures can be used to control nanometer-scale chemistry with zeptoliter (10-21 L) volumetric precision, catalyzing C-C bond formation and melting inorganic deposits. Also shown is the possibility to perform solar thermal CO oxidation at rates of 16 mol h-1 m-2 and with a solar-to-heat thermoplasmonic efficiency of 63%. Access to scalable, cost-effective refractory plasmonic nanofurnaces opens the way to the development of modular solar thermal devices for sustainable catalytic processes.

2.
Chem Sci ; 9(9): 2517-2524, 2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29732129

RESUMO

Cu2O cubes, octahedra, and rhombic dodecahedra can be pseudomorphically converted into Cu crystals of corresponding shapes through reduction by ammonia borane in ethanol at 50 °C or below within 3 min, demonstrating the feasibility of making challenging polyhedral metal particles from metal oxide crystals. Hydrogen gas is also produced from ammonia borane in the process. The obtained Cu crystals have a slightly nanoporous interior. Addition of diphenylacetylene in the formation of Cu rhombic dodecahedra leads to complete stereoselective production of sterically hindered (Z)-stilbene. Semihydrogenation of other alkynes also gives pure (Z)-alkenes. Cu cubes and octahedra also showed considerable (Z)-stilbene selectivity along with minor formation of (E)-stilbene and bibenzyl as compared to CuCl2 and commercial Cu2O particles. Mechanistic studies reveal that the low binding affinity of alkenes on the rhombic dodecahedra surfaces leads to high product selectivity. These Cu crystals act as a green and low-cost catalyst for the synthesis of high-purity (Z)-alkenes.

3.
Angew Chem Int Ed Engl ; 55(25): 7222-6, 2016 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-27136738

RESUMO

Au-Pd core-shell nanocrystals with tetrahexahedral (THH), cubic, and octahedral shapes and comparable sizes were synthesized. Similar-sized Au and Pd cubes and octahedra were also prepared. These nanocrystals were used for the hydrogen-evolution reaction (HER) from ammonia borane. Light irradiation can enhance the reaction rate for all the catalysts. In particular, Au-Pd THH exposing {730} facets showed the highest turnover frequency for hydrogen evolution under light with 3-fold rate enhancement benefiting from lattice strain, modified surface electronic state, and a broader range of light absorption. Finite-difference time-domain (FDTD) simulations show a stronger electric field enhancement on Au-Pd core-shell THH than those on other Pd-containing nanocrystals. Light-assisted nitro reduction by ammonia borane on Au-Pd THH was also demonstrated. Au-Pd tetrahexahedra supported on activated carbon can act as a superior recyclable plasmonic photocatalyst for hydrogen evolution.

4.
Langmuir ; 31(23): 6538-45, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26030343

RESUMO

Palladium octahedra, truncated octahedra, cuboctahedra, truncated cubes, and nanocubes with sizes of tens of nanometers have been synthesized in an aqueous mixture of H2PdCl4 solution, cetyltrimethylammonium chloride (CTAC) surfactant, KBr solution, dilute KI solution, and ascorbic acid solution at 35 °C for 30 min. By tuning the amount of dilute KBr solution introduced, particle shape control can be achieved. Adjusting the volumes of the Pd precursor and KBr solutions added, smaller and larger Pd nanocrystals were obtained with excellent shape control. Extensive structural and optical characterization of these nanocrystals has been performed. Two absorption bands in the ultraviolet region can be discerned for these Pd nanocrystals. Concave Pd cubes can also be prepared. Pd cubes were found to grow at a faster rate than that for the formation of octahedra. The concentrations of KBr and KI in the solution are so low that spectral shifts were not detected upon their addition to the solution. The Pd nanocrystals can readily be used for various applications after simple removal of surfactant.

5.
Nanoscale ; 7(25): 11135-41, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26059169

RESUMO

Pd-Cu2O core-shell nanocubes and truncated octahedra with six average sizes for each particle shape have been synthesized from 29 nm Pd nanocubes. The nanocubes have average edge lengths of 64-124 nm, while the truncated octahedra are 107-183 nm in the opposite tip distance. The core and shell composition and lattice orientation have been determined, showing the formation of single-crystalline Cu2O shells. The surface plasmon resonance (SPR) band from the Pd nanocrystal cores is barely visible. However, the Cu2O shells display facet-dependent optical properties. The Cu2O absorption band for smaller Pd-Cu2O cubes is consistently more red-shifted than somewhat larger Pd-Cu2O truncated octahedra. This work again shows that the observed facet-dependent optical phenomenon in metal-Cu2O core-shell nanocrystals is derived from the Cu2O shells. The use of 40 nm Pd cubes as cores gave uniform and size-tunable Pd-Cu2O nanocubes and truncated octahedra that display the Pd SPR band. The Pd SPR band is consistently located at 650 nm for Pd-Cu2O truncated octahedra, and 670 nm for the cubes despite large variation in the shell thickness. Both the Cu2O absorption and the Pd plasmonic band exhibit facet-dependent optical properties.

6.
Small ; 11(23): 2716-26, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25703694

RESUMO

The ability to prepare Au-Cu2O core-shell nanocrystals with precise control over particle size and shape has led to the discovery of facet-dependent optical properties in cuprous oxide crystals. The use of Au cores not only allows the successful formation of Au-Cu2O core-shell nanocrystals with tunable sizes, but also enables the observation of facet-dependent optical properties in these crystals through the Au localized surface plasmon resonance (LSPR) absorption band. By tuning the Cu2O shell morphology from rhombic dodecahedral to octahedral and cubic structures, and thus the exposed facets, the Au LSPR band position can be widely tuned. Such facet-dependent optical effects are not observed in bimetallic Au-Ag and Au-Pd core-shell nanocrystals with the same precisely tuned particle sizes and shapes. It is believed that similar facet-dependent optical properties could be observed in other ionic solids and other metal-metal oxide systems. The unusually large degree of plasmonic band tuning covering from the visible to the near-infrared region in this type of nanostructure should be quite useful for a range of plasmonic applications.

7.
Chemistry ; 20(48): 15991-7, 2014 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-25283297

RESUMO

Gold nanocubes, octahedra, and rhombic dodecahedra were examined for facet-dependent catalytic activity in the formation of triazoles. Rhombic dodecahedra gave 100% regioselective 1,4-triazoles. The product yield was increased by decreasing the particle size. However, a mixture of 1,4- and 1,5-triazoles was obtained in lower yields when cubes and octahedra of similar sizes were used. The lowest Au-atom density on the {110} surface and largest unsaturated coordination number of surface Au atoms may explain their best catalytic efficiency and product regioselectivity. Various spectroscopic techniques were employed to verify the formation of the Au-acetylide intermediate and establish the reaction mechanism, in which phenylacetylene binds to the Au {110} surface through the terminal-binding mode to result in the exclusive formation of 1,4-triazoles. The smallest rhombic dodecahedra can give diverse 1,4-disubstituted triazoles in good yields by coupling a wide variety of alkynes and organic halides.

8.
Chem Commun (Camb) ; 50(14): 1634-44, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24406546

RESUMO

Syntheses of metal and oxide nanocrystals with cubic crystal structures and well-controlled polyhedral morphologies such as cubic, octahedral, and rhombic dodecahedral shapes exposing, respectively, {100}, {111}, and {110} surfaces enable a more accurate determination of their facet-dependent properties. So far molecular adsorption, photocatalytic, organocatalytic, and electrical conductivity properties have been demonstrated to be surface-related or facet-dependent. Chemical etching and metal nanoparticle deposition can also be face-selective. Examples of these surface properties are presented. In general, ionic solids such as Cu2O nanocrystals exhibit more sharply different surface properties than those seen in metal nanoparticles. A better understanding of these facet-dependent properties is necessary to prepare nanomaterials with enhanced properties such as their catalytic activities.

9.
J Am Chem Soc ; 136(1): 396-404, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24341355

RESUMO

In this study, rhombic dodecahedral gold nanocrystals were used as cores for the generation of Au-Ag core-shell nanocrystals with cubic, truncated cubic, cuboctahedral, truncated octahedral, and octahedral structures. Gold nanocrystals were added to an aqueous mixture of cetyltrimethylammonium chloride (CTAC) surfactant, AgNO3, ascorbic acid, and NaOH to form the core-shell nanocrystals. The nanocrystals are highly uniform in size and shape, and can readily self-assemble into ordered packing structures on substrates. Results from observation of solution color changes and variation in the reaction temperature suggest octahedra are produced at a higher growth rate, while slower growth favors cube formation. The major localized surface plasmon resonance (LSPR) band positions for these nanocrystals are red-shifted compared to those for pristine silver particles with similar dimensions due to the LSPR effect from the gold cores. By increasing the concentrations of reagents, Au-Ag core-shell cubes and octahedra with tunable sizes were obtained. Au-Ag cubes with body diagonals of 130, 144, and 161 nm and octahedra with body diagonals of 113, 126, and 143 nm have been prepared, allowing the investigation of size effect on their optical properties. Au-Ag octahedra with thinner Ag shells (12-16.5 nm) exhibit a blue-shifted major LSPR band relative to the LSPR band at 538 nm for the gold cores. For Au-Ag octahedra and cubes with thicker shells (22.5-37 nm), the major LSPR band is progressively red-shifted from that of the gold cores with increasing shell thickness and particle size. The Au-Ag octahedra show higher catalytic activity than cubes toward reduction of 2-amino-5-nitrophenol by NaBH4 at 30 °C, but both particle shapes display significantly enhanced catalytic efficiency at 40 °C.


Assuntos
Ouro/química , Nanopartículas/química , Prata/química , Água/química , Catálise , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Tensoativos/química
10.
Nanoscale ; 5(24): 12494-501, 2013 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-24165690

RESUMO

Cubic, octahedral, and rhombic dodecahedral Cu2O nanocrystals bound by respectively {100}, {111}, and {110} facets were successfully employed to catalyze the [3 + 2] cycloaddition reaction for the regioselective synthesis of 3,5-disubstituted isoxazoles. Surfactant-free nanocrystals having the same total surface area were used for the catalysis. Strongly facet-dependent organocatalytic activity has been observed. Rhombic dodecahedra with fully exposed surface copper atoms on the (110) planes are the most efficient catalysts, followed by octahedra and the least active nanocubes. The particles are also recyclable catalysts. Cu2O rhombic dodecahedra were also used for the syntheses of 3,5-disubstituted isoxazoles from a wide variety of aromatic imidoyl chlorides and terminal alkynes in ethanol at 50 °C with excellent yields. Furthermore, a one-pot multi-component synthetic approach was demonstrated to form isoxazoles directly from readily available aldehyde precursors. This work clearly shows that precise facet engineering of Cu2O crystals can lead to significantly improved organocatalytic efficiency.

11.
Chemistry ; 19(47): 16036-43, 2013 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-24127396

RESUMO

We report the highly facet-dependent catalytic activity of Cu2O nanocubes, octahedra, and rhombic dodecahedra for the multicomponent direct synthesis of 1,2,3-triazoles from the reaction of alkynes, organic halides, and NaN3. The catalytic activities of clean surfactant-removed Cu2O nanocrystals with the same total surface area were compared. Rhombic dodecahedral Cu2O nanocrystals bounded by {110} facets were much more catalytically active than Cu2O octahedra exposing {111} facets, whereas Cu2O nanocubes displayed the slowest catalytic activity. The superior catalytic activity of Cu2O rhombic dodecahedra is attributed to the fully exposed surface Cu atoms on the {110} facet. A large series of 1,4-disubstituted 1,2,3-triazoles have been synthesized in excellent yields with high regioselectivity under green conditions by using these rhombic dodecahedral Cu2O catalysts, including the synthesis of rufinamide, an antiepileptic drug, demonstrating the potential of these nanocrystals as promising heterogeneous catalysts for other important coupling reactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...