Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Musculoskelet Neuronal Interact ; 24(2): 200-208, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38826003

RESUMO

OBJECTIVES: Bilateral Deficit (BLD) occurs when the force generated by both limbs together is smaller than the sum of the forces developed separately by the two limbs. BLD may be modulated by physical training. Here, were investigated the effects of unilateral or bilateral plyometric training on BLD and neuromuscular activation during lower limb explosive extensions. METHODS: Fourteen young males were randomized into the unilateral (UL_) or bilateral (BL_) training group. Plyometric training (20 sessions, 2 days/week) was performed on a sled ergometer, and consisted of UL or BL consecutive, plyometric lower limb extensions (3-to-5 sets; 8-to-10 repetitions). Before and after training, maximal explosive efforts with both lower limbs or with each limb separately were assessed. Electromyography of representative lower limb muscles was measured. RESULTS: BL_training significantly and largely decreased BLD (p=0.003, effect size=1.63). This was accompanied by the reversion from deficit to facilitation of the electromyography amplitude of knee extensors during bilateral efforts (p=0.007). Conversely, UL_training had negligible effects on BLD (p=0.781). Also, both groups showed similar improvements in their maximal explosive power generated after training. CONCLUSIONS: Bilateral plyometric training can mitigate BLD, and should be considered for training protocols focused on improving bilateral lower limb motor performance.


Assuntos
Eletromiografia , Extremidade Inferior , Músculo Esquelético , Exercício Pliométrico , Humanos , Masculino , Exercício Pliométrico/métodos , Extremidade Inferior/fisiologia , Adulto Jovem , Eletromiografia/métodos , Músculo Esquelético/fisiologia , Adulto , Força Muscular/fisiologia
2.
J Clin Med ; 13(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38592158

RESUMO

Background: Percutaneous spinal cord epidural stimulation (pSCES) has effectively restored varying levels of motor control in persons with motor complete spinal cord injury (SCI). Studying and standardizing the pSCES configurations may yield specific motor improvements. Previously, reliance on the amplitude of the SCES-evoked potentials (EPs) was used to determine the correct stimulation configurations. Methods: We, hereby, retrospectively examined the effects of wide and narrow-field configurations on establishing the motor recruitment curves of motor units of three different agonist-antagonist muscle groups. Magnetic resonance imaging was also used to individualize SCI participants (n = 4) according to their lesion characteristics. The slope of the recruitment curves using a six-degree polynomial function was calculated to derive the slope ratio for the agonist-antagonist muscle groups responsible for standing. Results: Axial damage ratios of the spinal cord ranged from 0.80 to 0.92, indicating at least some level of supraspinal connectivity for all participants. Despite the close range of these ratios, standing motor performance was enhanced using different stimulation configurations in the four persons with SCI. A slope ratio of ≥1 was considered for the recommended configurations necessary to achieve standing. The retrospectively identified configurations using the supine slope ratio of the recruitment curves of the motor units agreed with that visually inspected muscle EPs amplitude of the extensor relative to the flexor muscles in two of the four participants. Two participants managed to advance the selected configurations into independent standing performance after using tonic stimulation. The other two participants required different levels of assistance to attain standing performance. Conclusions: The findings suggest that the peak slope ratio of the muscle agonists-antagonists recruitment curves may potentially identify the pSCES configurations necessary to achieve standing in persons with SCI.

4.
Neurotrauma Rep ; 5(1): 277-292, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38515546

RESUMO

Activity-based training and lumbosacral spinal cord epidural stimulation (scES) have the potential to restore standing and walking with self-balance assistance after motor complete spinal cord injury (SCI). However, improvements in upright postural control have not previously been addressed in this population. Here, we implemented a novel robotic postural training with scES, performed with free hands, to restore upright postural control in individuals with chronic, cervical (n = 5) or high-thoracic (n = 1) motor complete SCI, who had previously undergone stand training with scES using a walker or a standing frame for self-balance assistance. Robotic postural training re-enabled and/or largely improved the participants' ability to control steady standing, self-initiated trunk movements and upper limb reaching movements while standing with free hands, receiving only external assistance for pelvic control. These improvements were associated with neuromuscular activation pattern adaptations above and below the lesion. These findings suggest that the human spinal cord below the level of injury can generate meaningful postural responses when its excitability is modulated by scES, and can learn to improve these responses. Upright postural control improvements can enhance functional motor recovery promoted by scES after severe SCI.

5.
Arch Phys Med Rehabil ; 105(1): 10-19, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37414239

RESUMO

OBJECTIVE: To derive and validate a simple, accurate CPR to predict future independent walking ability after SCI at the bedside that does not rely on motor scores and is predictive for those initially classified in the middle of the SCI severity spectrum. DESIGN: Retrospective cohort study. Binary variables were derived, indicating degrees of sensation to evaluate predictive value of pinprick and light touch variables across dermatomes. The optimal single sensory modality and dermatome was used to derive our CPR, which was validated on an independent dataset. SETTING: Analysis of SCI Model Systems dataset. PARTICIPANTS: Individuals with traumatic SCI. The data of 3679 participants (N=3679) were included with 623 participants comprising the derivation dataset and 3056 comprising the validation dataset. INTERVENTIONS: Not applicable. MAIN OUTCOME MEASURES: Self-reported ability to walk both indoors and outdoors. RESULTS: Pinprick testing at S1 over lateral heels, within 31 days of SCI, accurately identified future independent walkers 1 year after SCI. Normal pinprick in both lateral heels provided good prognosis, any pinprick sensation in either lateral heel provided fair prognosis, and no sensation provided poor prognosis. This CPR performed satisfactorily in the middle SCI severity subgroup. CONCLUSIONS: In this large multi-site study, we derived and validated a simple, accurate CPR using only pinprick sensory testing at lateral heels that predicts future independent walking after SCI.


Assuntos
Regras de Decisão Clínica , Traumatismos da Medula Espinal , Humanos , Exame Neurológico , Estudos Retrospectivos , Caminhada
6.
Front Neurosci ; 17: 1284581, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38144208

RESUMO

Descending motor signals are disrupted after complete spinal cord injury (SCI) resulting in loss of standing and walking. We previously restored standing and trunk control in a person with a T3 complete SCI following implantation of percutaneous spinal cord epidural stimulation (SCES). We, hereby, present a step-by-step procedure on configuring the SCES leads to initiate rhythmic lower limb activation (rhythmic-SCES) resulting in independent overground stepping in parallel bars and using a standard walker. Initially, SCES was examined in supine lying at 2 Hz before initiating stepping-like activity in parallel bars using 20 or 30 Hz; however, single lead configuration (+2, -5) resulted in lower limb adduction and crossing of limbs, impairing the initiation of overground stepping. After 6 months, interleaving the original rhythmic-SCES with an additional configuration (-12, +15) on the opposite lead, resulted in a decrease of the extensive adduction tone and allowed the participant to initiate overground stepping up to 16 consecutive steps. The current paradigm suggests that interleaving two rhythmic-SCES configurations may improve the excitability of the spinal circuitry to better interpret the residual descending supraspinal signals with the ascending proprioceptive inputs, resulting in a stepping-like motor behavior after complete SCI.

7.
J Clin Med ; 12(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37959340

RESUMO

Motor recovery following a complete spinal cord injury is not likely. This is partially due to insurance limitations. Rehabilitation strategies for individuals with this type of severe injury focus on the compensation for the activities of daily living in the home and community and not on the restoration of function. With limited time in therapies, the initial goals must focus on getting the patient home safely without the expectation of recovery of voluntary movement below the level of injury. In this study, we report a case of an individual with a chronic, cervical (C3)-level clinically motor- and sensory-complete injury who was able to perform voluntary movements with both upper and lower extremities when positioned in a sensory-rich environment conducive to the specific motor task. We show how he is able to intentionally perform push-ups, trunk extensions and leg presses only when appropriate sensory information is available to the spinal circuitry. These data show that the human spinal circuitry, even in the absence of clinically detectable supraspinal input, can generate motor patterns effective for the execution of various upper and lower extremity tasks, only when appropriate sensory information is present. Neurorehabilitation in the right sensory-motor environment that can promote partial recovery of voluntary movements below the level of injury, even in individuals diagnosed with a clinically motor-complete spinal cord injury.

8.
J Neurotrauma ; 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38009201

RESUMO

Spinal cord epidural stimulation can promote the recovery of motor function in individuals with severe spinal cord injury (SCI) by enabling the spinal circuitry to interpret sensory information and generate related neuromuscular responses. This approach enables the spinal cord to generate lower limb extension patterns during weight bearing, allowing individuals with SCI to achieve upright standing. We have shown that the human spinal cord can generate some standing postural responses during self-initiated body weight shifting. In this study, we investigated the ability of individuals with motor complete SCI receiving epidural stimulation to generate standing reactive postural responses after external perturbations were applied at the trunk. A cable-driven robotic device was used to provide constant assistance for pelvic control and to deliver precise trunk perturbations while participants used their hands to grasp onto handlebars for self-balance support (hands-on) as well as when participants were without support (free-hands). Five individuals with motor complete SCI receiving lumbosacral spinal cord epidural stimulation parameters specific for standing (Stand-scES) participated in this study. Trunk perturbations (average magnitude: 17 ± 3% body weight) were delivered randomly in the four cardinal directions. Participants attempted to control each perturbation such that upright standing was maintained and no additional external assistance was needed. Lower limb postural responses were generally more frequent, larger in magnitude, and appropriately modulated during the free-hands condition. This was associated with trunk displacement and lower limb loading modulation that were larger in the free-hands condition. Further, we observed discernible lower limb muscle synergies that were similar between the two perturbed standing conditions. These findings suggest that the human spinal circuitry involved in postural control retains the ability to generate meaningful lower limb postural responses after SCI when its excitability is properly modulated. Moreover, lower limb postural responses appear enhanced by a standing environment without upper limb stabilization that promotes afferent inputs associated with a larger modulation of ground reaction forces and trunk kinematics. These findings should be considered when developing future experimental frameworks aimed at studying upright postural control and activity-based recovery training protocols aimed at promoting neural plasticity and sensory-motor recovery.

9.
Bioengineering (Basel) ; 10(9)2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37760167

RESUMO

Cervical spinal cord injury (SCI) leads to impaired trunk motor control, negatively impacting the performance of activities of daily living in the affected individuals. Improved trunk control with better sitting posture has been previously observed due to neuromuscular electrical stimulation and transcutaneous spinal stimulation, while improved postural stability has been observed with spinal cord epidural stimulation (scES). Hence, we studied how trunk-specific scES impacts sitting independence and posture. Fourteen individuals with chronic, severe cervical SCI with an implanted neurostimulator performed a 5-min tall-sit task without and with trunk-specific scES. Spine posture was assessed by placing markers on five spine levels and evaluating vertical spine inclination angles. Duration of trunk manual assistance was used to assess independence along with the number of independence changes and average independence score across those changes. With scES, the sacrum-L1 inclination and number of independence changes tended to decrease by 1.64 ± 3.16° (p = 0.07; Cohen's d = 0.53) and 9.86 ± 16.8 (p = 0.047; Cohen's d = 0.59), respectively. Additionally, for the participants who had poor sitting independence without scES, level of independence tended to increase by 12.91% [0%, 31.52%] (p = 0.38; Cohen's d = 0.96) when scES was present. Hence, trunk-specific scES promoted improvements in lower spine posture and lower levels of trunk assistance.

10.
Neuromodulation ; 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37140522

RESUMO

STUDY DESIGN: This is a report of methods and tools for selection of task and individual configurations targeted for voluntary movement, standing, stepping, blood pressure stabilization, and facilitation of bladder storage and emptying using tonic-interleaved excitation of the lumbosacral spinal cord. OBJECTIVES: This study aimed to present strategies used for selection of stimulation parameters for various motor and autonomic functions. CONCLUSIONS: Tonic-interleaved functionally focused neuromodulation targets a myriad of consequences from spinal cord injury with surgical implantation of the epidural electrode at a single location. This approach indicates the sophistication of the human spinal cord circuitry and its important role in the regulation of motor and autonomic functions in humans.

11.
Surg Neurol Int ; 14: 87, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37025529

RESUMO

Background: Traumatic spinal cord injury (tSCI) is a debilitating condition, leading to chronic morbidity and mortality. In recent peer-reviewed studies, spinal cord epidural stimulation (scES) enabled voluntary movement and return of over-ground walking in a small number of patients with motor complete SCI. Using the most extensive case series (n = 25) for chronic SCI, the present report describes our motor and cardiovascular and functional outcomes, surgical and training complication rates, quality of life (QOL) improvements, and patient satisfaction results after scES. Methods: This prospective study occurred at the University of Louisville from 2009 to 2020. scES interventions began 2-3 weeks after surgical implantation of the scES device. Perioperative complications were recorded as well as long-term complications during training and device related events. QOL outcomes and patient satisfaction were evaluated using the impairment domains model and a global patient satisfaction scale, respectively. Results: Twenty-five patients (80% male, mean age of 30.9 ± 9.4 years) with chronic motor complete tSCI underwent scES using an epidural paddle electrode and internal pulse generator. The interval from SCI to scES implantation was 5.9 ± 3.4 years. Two participants (8%) developed infections, and three additional patients required washouts (12%). All participants achieved voluntary movement after implantation. A total of 17 research participants (85%) reported that the procedure either met (n = 9) or exceeded (n = 8) their expectations, and 100% would undergo the operation again. Conclusion: scES in this series was safe and achieved numerous benefits on motor and cardiovascular regulation and improved patient-reported QOL in multiple domains, with a high degree of patient satisfaction. The multiple previously unreported benefits beyond improvements in motor function render scES a promising option for improving QOL after motor complete SCI. Further studies may quantify these other benefits and clarify scES's role in SCI patients.

12.
J Spinal Cord Med ; 46(6): 889-899, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-35532324

RESUMO

CONTEXT/OBJECTIVE: Assessed feasibility and potential effectiveness of using a novel robotic upright stand trainer (RobUST) to deliver postural perturbations or provide assistance-as-needed at the trunk while individuals with spinal cord injury (SCI) performed stable standing and self-initiated trunk movements. These tasks were assessed with research participants' hands on handlebars for self-balance assistance (hands on) and with hands off (free hands). DESIGN: Proof of concept study. PARTICIPANTS: Four individuals with motor complete (n = 3) or incomplete (n = 1) SCI who were not able to achieve independent standing and presented a neurological lesion level ranging from cervical 4 to thoracic 2. OUTCOME MEASURES: Ground reaction forces, trunk displacement, and electromyography activity of trunk and lower limb muscles. RESULTS: Research participants received continuous pelvic assistance via RobUST, and manual trainer assistance at the knees to maintain standing. Participants were able to attempt all tasks. Free hands trunk perturbations resulted in greater load bearing-related sensory information (73% ipsilateral vertical loading), trunk displacement (57%), and muscle activation compared to hands on. Similarly, free hands stable standing with RobUST assistance-as-needed resulted in 8.5% larger bodyweight bearing, 112% larger trunk movement velocity, and higher trunk muscles activation compared to standing with hands on. Self-initiated trunk movements controlled by hands on showed 116% greater trunk displacement, 10% greater vertical ground reaction force, and greater ankle muscle activation compared to free hands. CONCLUSION: RobUST established a safe and challenging standing environment for individuals with SCI and has the potential to improve training paradigms and assessments of standing postural control.


Assuntos
Procedimentos Cirúrgicos Robóticos , Traumatismos da Medula Espinal , Humanos , Tronco , Posição Ortostática , Músculo Esquelético , Equilíbrio Postural/fisiologia
13.
J Musculoskelet Neuronal Interact ; 22(4): 465-473, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36458384

RESUMO

OBJECTIVES: Electrically-induced or voluntary conditioning-contractions (CC) can be used to affect contractile properties of a subsequent explosive contraction (EC). Here, we aimed at comparing the effect of neuromuscular-electrical-stimulation (NMES) vs voluntary CC performed prior to explosive contractions of the knee extensors. METHODS: A 10 sec NMES CC (100Hz, 1000µs, 10% MVC), or a voluntary contraction (VOL CC) mimicking the NMES CC, preceded an isometric EC of the knee extensors. Explosive contraction was performed with the goal to reach the target (70% MVC) as quickly as possible. RESULTS: All the parameters related with the explosive contractions' muscle-output were similar between protocols (difference ranging from 0.23%, Mean Torque; to 5.8%, Time to Target), except for the Time to Peak Torque, which was lower when preceded by NMES (11.1%, p=0.019). Interestingly, the RTD 0-50 ms_EC was 37.3% higher after the NMES compared with the VOL CC protocol. CONCLUSION: Explosive contraction was potentiated by an NMES CC as compared with a voluntary CC. This may be due to a reduction in descending drive following VOL CC, which has been shown to occur even with low-level voluntary efforts. These findings could be used to improve rehabilitation or training protocols that include conditioning contractions.


Assuntos
Substâncias Explosivas , Articulação do Joelho , Torque , Contração Isométrica , Contração Muscular
14.
J Sports Med Phys Fitness ; 62(7): 910-920, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34498822

RESUMO

BACKGROUND: The purpose was to compare the effects of 8-week resistance training programs (flywheel iso-inertial [FW] versus traditional gravity-dependent resistance training [GD]) performed twice a week at the same rate of perceived exertion (RPE), on muscle force and power capacities and physical performance in healthy older participants. METHODS: Twenty-four participants were randomly assigned to either FW (male/female ratio: 7/5, age: 67.1±3.8 years) or GD (male/female ratio: 6/6, age 68.3±3.0 years) group. Knee extension maximal isometric voluntary contractions (MVC), lower limb maximal explosive power (MEP), Six-Minute Walking Test (6MWT), Timed Up-and-Go Test (TUG), metabolic cost of walking (CW) and agonist-antagonist co-contraction time (CCT) during walking were evaluated before and after training. RESULTS: absolute MEP and MEP normalized for body mass increased only in FW than GD group (+10.8% vs. +0.31%, P=0.056, respectively; +14.8% vs. +13.9%, P<0.001, respectively). Both training modalities improved MVC to a similar extent (+11.1% in FW vs. +13.4% in GD, P<0.001). Analogously, 6MWT distance increased in FW and GD (+5.2 and +5.5%, P<0.041, respectively). No effects of time and training modality were observed on the other parameters. CONCLUSIONS: The results of this study suggest that when FW and GD are administered at the same RPE with FW performed at higher movement speed in the concentric phase, both the trainings generate similar improvements in muscle strength but only the former can promote greater muscle power enhancements than GD in healthy older adults.


Assuntos
Treinamento Resistido , Idoso , Feminino , Humanos , Perna (Membro) , Masculino , Pessoa de Meia-Idade , Força Muscular/fisiologia , Músculo Esquelético/fisiologia , Treinamento Resistido/métodos , Caminhada
15.
Exp Brain Res ; 240(1): 279-288, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34854934

RESUMO

Spinal cord epidural stimulation (scES) is an intervention to restore motor function in those with severe spinal cord injury (SCI). Spinal cord lesion characteristics assessed via magnetic resonance imaging (MRI) may contribute to understand motor recovery. This study assessed relationships between standing ability with scES and spared spinal cord tissue characteristics at the lesion site. We hypothesized that the amount of lateral spared cord tissue would be related to independent extension in the ipsilateral lower limb. Eleven individuals with chronic, clinically motor complete SCI underwent spinal cord MRI, and were subsequently implanted with scES. Standing ability and lower limb activation patterns were assessed during an overground standing experiment with scES. This assessment occurred prior to any activity-based intervention with scES. Lesion hyperintensity was segmented from T2 axial images, and template-based analysis was used to estimate spared tissue in anterior, posterior, right, and left spinal cord regions. Regression analysis was used to assess relationships between imaging and standing outcomes. Total volume of spared tissue was related to left (p = 0.007), right (p = 0.005), and bilateral (p = 0.011) lower limb extension. Spared tissue in the left cord region was related to left lower limb extension (p = 0.019). A positive trend (p = 0.138) was also observed between right spared cord tissue and right lower limb extension. In this study, MRI measures of spared spinal cord tissue were significantly related to standing outcomes with scES. These preliminary results warrant future investigation of roles of supraspinal input and MRI-detected spared spinal cord tissue on lower limb motor responsiveness to scES.


Assuntos
Traumatismos da Medula Espinal , Estimulação da Medula Espinal , Espaço Epidural/diagnóstico por imagem , Humanos , Medula Espinal/diagnóstico por imagem , Traumatismos da Medula Espinal/diagnóstico por imagem , Traumatismos da Medula Espinal/terapia , Posição Ortostática
16.
J Appl Physiol (1985) ; 131(3): 1100-1110, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34382840

RESUMO

Spinal cord epidural stimulation (scES) combined with activity-based training can promote motor function recovery in individuals with motor complete spinal cord injury (SCI). The characteristics of motor neuron recruitment, which influence different aspects of motor control, are still unknown when motor function is promoted by scES. Here, we enrolled five individuals with chronic motor complete SCI implanted with an scES unit to study the recruitment order of motor neurons during standing enabled by scES. We recorded high-density electromyography (HD-EMG) signals on the vastus lateralis muscle and inferred the order of recruitment of motor neurons from the relation between amplitude and conduction velocity of the scES-evoked EMG responses along the muscle fibers. Conduction velocity of scES-evoked responses was modulated over time, whereas stimulation parameters and standing condition remained constant, with average values ranging between 3.0 ± 0.1 and 4.4 ± 0.3 m/s. We found that the human spinal circuitry receiving epidural stimulation can promote both orderly (according to motor neuron size) and inverse trends of motor neuron recruitment, and that the engagement of spinal networks promoting rhythmic activity may favor orderly recruitment trends. Conversely, the different recruitment trends did not appear to be related with time since injury or scES implant, nor to the ability to achieve independent knees extension, nor to the conduction velocity values. The proposed approach can be implemented to investigate the effects of stimulation parameters and training-induced neural plasticity on the characteristics of motor neuron recruitment order, contributing to improve mechanistic understanding and effectiveness of epidural stimulation-promoted motor recovery after SCI.NEW & NOTEWORTHY After motor complete spinal cord injury, the human spinal cord receiving epidural stimulation can promote both orderly and inverse trends of motor neuron recruitment. The engagement of spinal networks involved in the generation of rhythmic activity seems to favor orderly recruitment trends.


Assuntos
Traumatismos da Medula Espinal , Estimulação da Medula Espinal , Eletromiografia , Espaço Epidural , Humanos , Neurônios Motores , Medula Espinal
17.
Eur J Appl Physiol ; 121(6): 1653-1664, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33656575

RESUMO

PURPOSE: Neuromuscular Electrical Stimulation (NMES) is commonly used in neuromuscular rehabilitation protocols, and its parameters selection substantially affects the characteristics of muscle activation. Here, we investigated the effects of short pulse width (200 µs) and higher intensity (short-high) NMES or long pulse width (1000 µs) and lower intensity (long-low) NMES on muscle mechanical output and fractional oxygen extraction. Muscle contractions were elicited with 100 Hz stimulation frequency, and the initial torque output was matched by adjusting stimulation intensity. METHODS: Fourteen able-bodied and six spinal cord-injured (SCI) individuals participated in the study. The NMES protocol (75 isometric contractions, 1-s on-3-s off) targeting the knee extensors was performed with long-low or short-high NMES applied over the midline between anterior superior iliac spine and patella protrusion in two different days. Muscle work was estimated by torque-time integral, contractile properties by rate of torque development and half-relaxation time, and vastus lateralis fractional oxygen extraction was assessed by Near-Infrared Spectroscopy (NIRS). RESULTS: Torque-time integral elicited by the two NMES paradigms was similar throughout the stimulation protocol, with differences ranging between 1.4% (p = 0.877; able-bodied, mid-part of the protocol) and 9.9% (p = 0.147; SCI, mid-part of the protocol). Contractile properties were also comparable in the two NMES paradigms. However, long-low NMES resulted in higher fractional oxygen extraction in able-bodied (+ 36%; p = 0.006). CONCLUSION: Long-low and short-high NMES recruited quadriceps femoris motor units that demonstrated similar contractile and fatigability properties. However, long-low NMES conceivably resulted in the preferential recruitment of vastus lateralis muscle fibers as detected by NIRS.


Assuntos
Terapia por Estimulação Elétrica/métodos , Perna (Membro) , Contração Muscular/fisiologia , Paraplegia/reabilitação , Feminino , Humanos , Masculino , Consumo de Oxigênio/fisiologia , Torque , Adulto Jovem
18.
Brain ; 144(2): 420-433, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33367527

RESUMO

Spinal cord epidural stimulation (scES) has enabled volitional lower extremity movements in individuals with chronic and clinically motor complete spinal cord injury and no clinically detectable brain influence. The aim of this study was to understand whether the individuals' neuroanatomical characteristics or positioning of the scES electrode were important factors influencing the extent of initial recovery of lower limb voluntary movements in those with clinically motor complete paralysis. We hypothesized that there would be significant correlations between the number of joints moved during attempts with scES prior to any training interventions and the amount of cervical cord atrophy above the injury, length of post-traumatic myelomalacia and the amount of volume coverage of lumbosacral enlargement by the stimulation electrode array. The clinical and imaging records of 20 individuals with chronic and clinically motor complete spinal cord injury who underwent scES implantation were reviewed and analysed using MRI and X-ray integration, image segmentation and spinal cord volumetric reconstruction techniques. All individuals that participated in the scES study (n = 20) achieved, to some extent, lower extremity voluntary movements post scES implant and prior to any locomotor, voluntary movement or cardiovascular training. The correlation results showed that neither the cross-section area of spinal cord at C3 (n = 19, r = 0.33, P = 0.16) nor the length of severe myelomalacia (n = 18, r = -0.02, P = 0.93) correlated significantly with volitional lower limb movement ability. However, there was a significant, moderate correlation (n = 20, r = 0.59, P = 0.006) between the estimated percentage of the lumbosacral enlargement coverage by the paddle electrode as well as the position of the paddle relative to the maximal lumbosacral enlargement and the conus tip (n = 20, r = 0.50, P = 0.026) with the number of joints moved volitionally. These results suggest that greater coverage of the lumbosacral enlargement by scES may improve motor recovery prior to any training, possibly because of direct modulatory effects on the spinal networks that control lower extremity movements indicating the significant role of motor control at the level of the spinal cord.


Assuntos
Movimento , Traumatismos da Medula Espinal/diagnóstico , Traumatismos da Medula Espinal/reabilitação , Estimulação da Medula Espinal/métodos , Volição , Adulto , Espaço Epidural , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Resultado do Tratamento , Adulto Jovem
20.
Front Syst Neurosci ; 14: 559313, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33192348

RESUMO

Previous studies have shown that epidural stimulation of the lumbosacral spinal cord (scES) can re-enable lower limb volitional motor control in individuals with chronic, clinically motor complete spinal cord injury (SCI). This observation entails that residual supraspinal connectivity to the lumbosacral spinal circuitry still persisted after SCI, although it was non-detectable when scES was not provided. In the present study, we aimed at exploring further the mechanisms underlying scES-promoted recovery of volitional lower limb motor control by investigating neuroimaging markers at the spinal cord lesion site via magnetic resonance imaging (MRI). Spinal cord MRI was collected prior to epidural stimulator implantation in 13 individuals with chronic, clinically motor complete SCI, and the spared tissue of specific regions of the spinal cord (anterior, posterior, right, left, and total cord) was assessed. After epidural stimulator implantation, and prior to any training, volitional motor control was evaluated during left and right lower limb flexion and ankle dorsiflexion attempts. The ability to generate force exertion and movement was not correlated to any neuroimaging marker. On the other hand, spared tissue of specific cord regions significantly and importantly correlated with some aspects of motor control that include activation amplitude of antagonist (negative correlation) muscles during left ankle dorsiflexion, and electromyographic coordination patterns during right lower limb flexion. The fact that amount and location of spared spinal cord tissue at the lesion site were not related to the ability to generate volitional lower limb movements may suggest that supraspinal inputs through spared spinal cord regions that differ across individuals can result in the generation of lower limb volitional motor output prior to any training when epidural stimulation is provided.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...