Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(15): e35683, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39170135

RESUMO

Next generation electrical grid considered as Smart Grid has completely embarked a journey in the present electricity era. This creates a dominant need of machine learning approaches for security aspects at the larger scale for the electrical grid. The need of connectivity and complete communication in the system uses a large amount of data where the involvement of machine learning models with proper frameworks are required. This massive amount of data can be handled by various process of machine learning models by selecting appropriate set of consumers to respond in accordance with demand response modelling, learning the different attributes of the consumers, dynamic pricing schemes, various load forecasting and also data acquisition process with more cost effectiveness. In connected to this process, considering complex smart grid security and privacy based methods becomes a major aspect and there can be potential cyber threats for the consumers and also utility data. The security concerns related to machine learning model exhibits a key factor based on different machine learning algorithms used and needed for the energy application at a future perspective. This work exhibits as a detailed analysis with machine learning models which are considered as cyber physical system model with smart grid. This work also gives a clear understanding towards the potential advantages, limitations of the algorithms in a security aspect and outlines future direction in this very important area and fast-growing approach.

2.
Sensors (Basel) ; 23(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37050484

RESUMO

In conventional modern vehicles, the Internet of Things-based automotive embedded systems are used to collect various data from real-time sensors and store it in the cloud platform to perform visualization and analytics. The proposed work is to implement computer vision-aided vehicle intercommunication V2V (vehicle-to-vehicle) implemented using the Internet of Things for an autonomous vehicle. Computer vision-based driver assistance supports the vehicle to perform efficiently in critical transitions such as lane change or collision avoidance during the autonomous driving mode. In addition to this, the main work emphasizes observing multiple parameters of the In-Vehicle system such as speed, distance covered, idle time, and fuel economy by the electronic control unit are evaluated in this process. Electronic control unit through brake control module, powertrain control module, transmission control module, suspension control module, and battery management system helps to predict the nature of drive-in different terrains and also can suggest effective custom driving modes for advanced driver assistance systems. These features are implemented with the help of the vehicle-to-infrastructure protocol, which collects data through gateway nodes that can be visualized in the IoT data frame. The proposed work involves the process of analyzing and visualizing the driver-influencing factors of a modern vehicle that is in connection with the IoT cloud platform. The custom drive mode suggestion and improvisation had been completed with help of computational analytics that leads to the deployment of an over-the-air update to the vehicle embedded system upgradation for betterment in drivability. These operations are progressed through a cloud server which is the prime factor proposed in this work.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA