Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Front Neurol ; 13: 960454, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35968272

RESUMO

Early diagnosis and treatment are critical for young children with infantile spasms (IS), as this maximizes the possibility of the best possible child-specific outcome. However, there are major barriers to achieving this, including high rates of misdiagnosis or failure to recognize the seizures, medication failure, and relapse. There are currently no validated tools to aid clinicians in assessing objective diagnostic criteria, predicting or measuring medication response, or predicting the likelihood of relapse. However, the pivotal role of EEG in the clinical management of IS has prompted many recent studies of potential EEG biomarkers of the disease. These include both visual EEG biomarkers based on human visual interpretation of the EEG and computational EEG biomarkers in which computers calculate quantitative features of the EEG. Here, we review the literature on both types of biomarkers, organized based on the application (diagnosis, treatment response, prediction, etc.). Visual biomarkers include the assessment of hypsarrhythmia, epileptiform discharges, fast oscillations, and the Burden of AmplitudeS and Epileptiform Discharges (BASED) score. Computational markers include EEG amplitude and power spectrum, entropy, functional connectivity, high frequency oscillations (HFOs), long-range temporal correlations, and phase-amplitude coupling. We also introduce each of the computational measures and provide representative examples. Finally, we highlight remaining gaps in the literature, describe practical guidelines for future biomarker discovery and validation studies, and discuss remaining roadblocks to clinical implementation, with the goal of facilitating future work in this critical area.

3.
Epilepsia ; 61(8): 1553-1569, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32729943

RESUMO

High-frequency oscillations (HFOs) in intracranial electroencephalography (EEG) are a promising biomarker of the epileptogenic zone and tool for surgical planning. Many studies have shown that a high rate of HFOs (number per minute) is correlated with the seizure-onset zone, and complete removal of HFO-generating brain regions has been associated with seizure-free outcome after surgery. In order to use HFOs as a biomarker, these transient events must first be detected in electrophysiological data. Because visual detection of HFOs is time-consuming and subject to low interrater reliability, many automated algorithms have been developed, and they are being used increasingly for such studies. However, there is little guidance on how to select an algorithm, implement it in a clinical setting, and validate the performance. Therefore, we aim to review automated HFO detection algorithms, focusing on conceptual similarities and differences between them. We summarize the standard steps for data pre-processing, as well as post-processing strategies for rejection of false-positive detections. We also detail four methods for algorithm testing and validation, and we describe the specific goal achieved by each one. We briefly review direct comparisons of automated algorithms applied to the same data set, emphasizing the importance of optimizing detection parameters. Then, to assess trends in the use of automated algorithms and their potential for use in clinical studies, we review evidence for the relationship between automatically detected HFOs and surgical outcome. We conclude with practical recommendations and propose standards for the selection, implementation, and validation of automated HFO-detection algorithms.


Assuntos
Algoritmos , Encéfalo/fisiopatologia , Eletrocorticografia/tendências , Epilepsia/diagnóstico , Processamento de Sinais Assistido por Computador , Artefatos , Mapeamento Encefálico , Ondas Encefálicas , Eletroencefalografia/tendências , Epilepsia/fisiopatologia , Humanos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...