Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Toxicol ; 95(11): 3475-3495, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34510227

RESUMO

microRNAs (miRNAs or miRs) are short non-coding RNA molecules which have been shown to be dysregulated and released into the extracellular milieu as a result of many drug and non-drug-induced pathologies in different organ systems. Consequently, circulating miRs have been proposed as useful biomarkers of many disease states, including drug-induced tissue injury. miRs have shown potential to support or even replace the existing traditional biomarkers of drug-induced toxicity in terms of sensitivity and specificity, and there is some evidence for their improved diagnostic and prognostic value. However, several pre-analytical and analytical challenges, mainly associated with assay standardization, require solutions before circulating miRs can be successfully translated into the clinic. This review will consider the value and potential for the use of circulating miRs in drug-safety assessment and describe a systems approach to the analysis of the miRNAome in the discovery setting, as well as highlighting standardization issues that at this stage prevent their clinical use as biomarkers. Highlighting these challenges will hopefully drive future research into finding appropriate solutions, and eventually circulating miRs may be translated to the clinic where their undoubted biomarker potential can be used to benefit patients in rapid, easy to use, point-of-care test systems.


Assuntos
Biomarcadores Farmacológicos , MicroRNAs/sangue , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/diagnóstico , Humanos , MicroRNAs/análise , Sensibilidade e Especificidade
2.
Mol Biol Cell ; 26(11): 1971-84, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25851605

RESUMO

Contrary to cell cycle-associated cyclin-dependent kinases, CDK5 is best known for its regulation of signaling processes in differentiated cells and its destructive activation in Alzheimer's disease. Recently, CDK5 has been implicated in a number of different cancers, but how it is able to stimulate cancer-related signaling pathways remains enigmatic. Our goal was to study the cancer-promoting mechanisms of CDK5 in prostate cancer. We observed that CDK5 is necessary for proliferation of several prostate cancer cell lines. Correspondingly, there was considerable growth promotion when CDK5 was overexpressed. When examining the reasons for the altered proliferation effects, we observed that CDK5 phosphorylates S308 on the androgen receptor (AR), resulting in its stabilization and differential expression of AR target genes including several growth-priming transcription factors. However, the amplified cell growth was found to be separated from AR signaling, further corroborated by CDK5-dependent proliferation of AR null cells. Instead, we found that the key growth-promoting effect was due to specific CDK5-mediated AKT activation. Down-regulation of CDK5 repressed AKT phosphorylation by altering its intracellular localization, immediately followed by prominent cell cycle inhibition. Taken together, these results suggest that CDK5 acts as a crucial signaling hub in prostate cancer cells by controlling androgen responses through AR, maintaining and accelerating cell proliferation through AKT activation, and releasing cell cycle breaks.


Assuntos
Proliferação de Células , Quinase 5 Dependente de Ciclina/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Androgênicos/metabolismo , Quinase 5 Dependente de Ciclina/genética , Humanos , Masculino , Fosforilação , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/fisiopatologia , Receptores Androgênicos/genética , Transdução de Sinais
3.
Biochem Pharmacol ; 86(5): 571-83, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23747345

RESUMO

Prostate cancer cells frequently develop resistance toward androgen-deprivation and chemotherapy. To identify new approaches to treat androgen-dependent prostate cancer, we have performed a structure-activity analysis of lignan polyphenols for cancer cell specific sensitization to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a death ligand that has ability to induce tumor-specific cell death. In this study, we report that the lignan nortrachelogenin (NTG) is the most efficient of the 27 tested lignan compounds in sensitizing prostate cancer cells to TRAIL-induced apoptosis. Importantly, pretreatment with NTG does not sensitize a non-malignant prostate cell line to TRAIL-induced cell death. The structural comparison of lignans reveals that the dibenzylbutyrolactone skeleton is required for the apoptosis-sensitizing activity, while substitutions at the aromatic rings do not seem to play a critical role in this lignan function. Our study also characterizes the cellular effects and molecular mechanisms involved in NTG anticancer activity. We previously reported that specific lignans inhibit the Akt survival-signaling pathway in concert with TRAIL sensitization. While NTG is also shown to be a effective inhibitor of Akt signaling, in this study we further demonstrate that NTG potently inhibits tyrosine kinase (RTK) activation in response to growth factors, such as insulin and insulin-like growth factor I (IGF-I). Our results identify NTG as a novel agent for prostate cancer therapy with ability to inhibit Akt membrane localization and activity as well as the activation of growth factor receptors (GFRs), thereby efficiently synergizing with TRAIL exposure.


Assuntos
Antineoplásicos/farmacologia , Furanos/farmacologia , Fator de Crescimento Insulin-Like I/metabolismo , Lignanas/farmacologia , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Ligante Indutor de Apoptose Relacionado a TNF/fisiologia , Apoptose/fisiologia , Linhagem Celular Tumoral , Humanos , Masculino , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...