Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol Sci ; 105(1): 79-85, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18556666

RESUMO

The mouse local lymph node assay (LLNA) has become the preferred test for evaluating the dermal sensitization potential of chemicals and requirements are now emerging for its use in the evaluation of their formulated products, especially in the European Union. However, despite its widespread use and extensive validation, the use of this assay for directly testing mixtures and formulated products has been questioned, which could lead to repeat testing using multiple animal models. As pesticide formulations are typically a specific complex blend of chemicals for use as aqueous-based dilutions, traditional vehicles prescribed for the LLNA may change the properties of these formulations leading to inaccurate test results and hazard identification. The objective of this study was to evaluate the effectiveness of an aqueous solution of Pluronic L92 block copolymer surfactant (L92) as a vehicle in the mouse LLNA across five laboratories. Three chemicals with known sensitization potential and four pesticide formulations for which the sensitization potential in guinea pigs and/or humans had previously been assessed were used. Identical LLNA protocols and test materials were used in the evaluation. Assessment of the positive control chemicals, hexylcinnamaldehyde, formaldehyde, and potassium dichromate revealed positive results when using 1% aqueous L92 as the vehicle. Furthermore, results for these chemicals were reproducible among the five laboratories and demonstrated consistent relative potency determinations. The four pesticide formulations diluted in 1% aqueous L92 also demonstrated reproducible results in the LLNA among the five laboratories. Results for these test materials were also consistent with those generated previously using guinea pigs or from human experience. These data support testing aqueous compatible chemicals or pesticide formulations using the mouse LLNA, and provide additional support for the use of 1% aqueous L92 as a suitable, aqueous-based vehicle.


Assuntos
Ensaio Local de Linfonodo , Praguicidas/química , Praguicidas/toxicidade , Poloxâmero/química , Tensoativos/química , Acroleína/análogos & derivados , Acroleína/toxicidade , Animais , Química Farmacêutica , Feminino , Formaldeído/toxicidade , Guias como Assunto , Humanos , Laboratórios , Camundongos , Camundongos Endogâmicos CBA , Veículos Farmacêuticos , Plantas/efeitos dos fármacos , Dicromato de Potássio/toxicidade
2.
Altern Lab Anim ; 35(6): 559-601, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18186667

RESUMO

ECVAM sponsored a formal validation study on three in vitro tests for skin irritation, of which two employ reconstituted human epidermis models (EPISKIN, EpiDerm), and one, the skin integrity function test (SIFT), employs ex vivo mouse skin. The goal of the study was to assess whether the in vitro tests would correctly predict in vivo classifications according to the EU classification scheme, "R38" and "no label" (i.e. non-irritant). 58 chemicals (25 irritants and 33 non-irritants) were tested, having been selected to give broad coverage of physico-chemical properties, and an adequate distribution of irritancy scores derived from in vivo rabbit skin irritation tests. In Phase 1, 20 of these chemicals (9 irritants and 11 non-irritants) were tested with coded identities by a single lead laboratory for each of the methods, to confirm the suitability of the protocol improvements introduced after a prevalidation phase. When cell viability (evaluated by the MTT reduction test) was used as the endpoint, the predictive ability of both EpiDerm and EPISKIN was considered sufficient to justify their progression to Phase 2, while the predictive ability of the SIFT was judged to be inadequate. Since both the reconstituted skin models provided false predictions around the in vivo classification border (a rabbit Draize test score of 2), the release of a cytokine, interleukin-1alpha (IL-1alpha), was also determined. In Phase 2, each human skin model was tested in three laboratories, with 58 chemicals. The main endpoint measured for both EpiDerm and EPISKIN was cell viability. In samples from chemicals which gave MTT assay results above the threshold of 50% viability, IL-1alpha release was also measured, to determine whether the additional endpoint would improve the predictive ability of the tests. For EPISKIN, the sensitivity was 75% and the specificity was 81% (MTT assay only); with the combination of the MTT and IL-1alpha assays, the sensitivity increased to 91%, with a specificity of 79%. For EpiDerm, the sensitivity was 57% and the specificity was 85% (MTT assay only), while the predictive capacity of EpiDerm was not improved by the measurement of IL-1alpha release. Following independent peer review, in April 2007 the ECVAM Scientific Advisory Committee endorsed the scientific validity of the EPISKIN test as a replacement for the rabbit skin irritation method, and of the EpiDerm method for identifying skin irritants as part of a tiered testing strategy. This new alternative approach will probably be the first use of in vitro toxicity testing to replace the Draize rabbit skin irritation test in Europe and internationally, since, in the very near future, new EU and OECD Test Guidelines will be proposed for regulatory acceptance.


Assuntos
Irritantes/toxicidade , Dermatopatias/induzido quimicamente , Fenômenos Fisiológicos da Pele , Pele/efeitos dos fármacos , Doença Aguda , Alternativas aos Testes com Animais , Animais , Humanos , Camundongos , Reprodutibilidade dos Testes , Dermatopatias/prevenção & controle
3.
Toxicol In Vitro ; 20(5): 547-59, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16455230

RESUMO

Based on two successfully completed ECVAM validation studies for in vitro skin corrosion testing of chemicals, the National Co-ordinators of OECD Test Guideline Programme endorsed in 2002 two new test guidelines: TG 430 'Transcutaneous Electrical Resistance assay' and TG 431 'Human Skin Model Test'. To allow all suitable in vitro human reconstructed (dermal or epidermal) models to be used for skin corrosion testing, the OECD TG 431 defines general and functional conditions that the model must meet before it will be routinely used for skin corrosion testing. In addition, the guideline requires correct prediction of 12 reference chemicals and assessment of intra- and inter-laboratory variability. To show that the OECD TG 431 concept works, in 2003 ZEBET tested several chemicals from the ECVAM validation trials on the SkinEthic reconstituted human epidermal (RHE) model. Based on knowledge that reconstructed human skin models perform similarly in toxicological studies, it was decided to adopt the validated EpiDerm skin corrosion test protocol and prediction model to the SkinEthic model. After minor technical changes, classifications were obtained in concordance with those reported for the validated human skin models EPISKIN and EpiDerm. To allow adequate determination of inter-laboratory reproducibility, a blind trial was conducted in three laboratories -- ZEBET (D), Safepharm (UK) and BASF (D), in which the 12 endorsed reference chemicals were tested. Results obtained with the SkinEthic epidermal model were reproducible, both within and between laboratories, and over time. Concordance between the in vitro predictions of skin corrosivity potential obtained with the SkinEthic model and the predictions obtained with the accepted tests of OECD TG 430 and TG 431 was very good. The new test was able to distinguish between corrosive and non-corrosive reference chemicals with an accuracy of 93%.


Assuntos
Cáusticos/toxicidade , Epiderme/efeitos dos fármacos , Cáusticos/classificação , Corrosão , Impedância Elétrica , Humanos , Técnicas In Vitro , Reprodutibilidade dos Testes , Testes de Toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...