Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Malar J ; 23(1): 75, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475843

RESUMO

BACKGROUND: The Great Mekong Subregion has attained a major decline in malaria cases and fatalities over the last years, but residual transmission hotspots remain, supposedly fueled by forest workers and migrant populations. This study aimed to: (i) characterize the fine-scale mobility of forest-goers and understand links between their daily movement patterns and malaria transmission, using parasites detection via real time polymerase chain reaction (RT PCR) and the individual exposure to Anopheles bites by quantification of anti-Anopheles saliva antibodies via enzyme-linked immunosorbent assay; (ii) assess the concordance of questionnaires and Global Positioning System (GPS) data loggers for measuring mobility. METHODS: Two 28 day follow-ups during dry and rainy seasons, including a GPS tracking, questionnaires and health examinations, were performed on male forest goers representing the population at highest risk of infection. Their time spent in different land use categories and demographic data were analyzed in order to understand the risk factors driving malaria in the study area. RESULTS: Malaria risk varied with village forest cover and at a resolution of only a few kilometers: participants from villages outside the forest had the highest malaria prevalence compared to participants from forest fringe's villages. The time spent in a specific environment did not modulate the risk of malaria, in particular the time spent in forest was not associated with a higher probability to detect malaria among forest-goers. The levels of antibody response to Anopheles salivary peptide among participants were significantly higher during the rainy season, in accordance with Anopheles mosquito density variation, but was not affected by sociodemographic and mobility factors. The agreement between GPS and self-reported data was only 61.9% in reporting each kind of visited environment. CONCLUSIONS: In a context of residual malaria transmission which was mainly depicted by P. vivax asymptomatic infections, the implementation of questionnaires, GPS data-loggers and quantification of anti-saliva Anopheles antibodies on the high-risk group were not powerful enough to detect malaria risk factors associated with different mobility behaviours or time spent in various environments. The joint implementation of GPS trackers and questionnaires allowed to highlight the limitations of both methodologies and the benefits of using them together. New detection and follow-up strategies are still called for.


Assuntos
Anopheles , Malária Vivax , Malária , Animais , Masculino , Humanos , Camboja/epidemiologia , Sistemas de Informação Geográfica , Malária/epidemiologia , Malária Vivax/epidemiologia , Inquéritos e Questionários , Anopheles/parasitologia
2.
Malar J ; 22(1): 313, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848895

RESUMO

BACKGROUND: Wetlands and irrigated agricultural crops create potential breeding sites for Anopheles mosquitoes, leading to a heterogeneity in malaria transmission. In agricultural areas, heterogeneity of malaria transmission is often associated with the presence of hotspots consisting of localized clusters of higher transmission intensity. This study aims to identify micro-geographic hotspots of malaria transmission in an agricultural setting using a multidisciplinary approach. METHODS: Two cross-sectional surveys were conducted at the end of the dry season and at the peak of the rainy season in rural and urban sites in Bouna, northeastern Côte d'Ivoire. A total of 296 individuals from 148 farming households were randomly selected and sociological, geographical, entomological, and clinical data as well as blood samples were collected during each visit. Parasitological data and Anopheles exposure (measured using entomological and immunological methods) were compared with demographic, agricultural, and geographic data to identify drivers of malaria transmission. Heat maps combining these data were used to identify households with ongoing malaria transmission throughout the year. RESULTS: In rural areas, Plasmodium prevalence was consistent between the dry and the rainy seasons, with roughly half of the population infected. In urban areas, malaria transmission indicators were lower, with a parasite prevalence of less than 20%, which remained comparable between the dry and the rainy season. The presence of irrigated crops and proximity to wetlands were associated with increased Anopheles exposure. By mapping Plasmodium infection and Anopheles exposure, two different types of hotspots of malaria transmission were identified: micro-geographical scale and local scale hotspots. CONCLUSIONS: The presence of wetlands in urban areas and irrigated agriculture in rural areas resulted in heterogeneity in malaria transmission on a micro-geographical scale. These specific households present particular risk of malaria transmission and could fuel malaria transmission in surrounding households. The identification of micro-geographical areas using heat maps combining several epidemiological parameters can help to identify hotspots of malaria transmission. The implementation of malaria control measures, such as seasonal chemoprophylaxis or vector control, in these areas could help to reduce the incidence of malaria and facilitate its elimination.


Assuntos
Anopheles , Malária , Animais , Humanos , Côte d'Ivoire/epidemiologia , Estudos Transversais , Mosquitos Vetores , Malária/prevenção & controle , Agricultura , Estações do Ano
3.
Trop Med Infect Dis ; 8(10)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37888603

RESUMO

In sub-Saharan Africa, despite the implementation of multiple control interventions, the prevalence of malaria infection and clinical cases remains high. The primary tool for vector control against malaria in this region is the use of long-lasting insecticide-treated nets (LLINs) combined or not with indoor residual spraying (IRS) to achieve a synergistic effect in protection. The objective of this study was to assess the effectiveness of LLINs, with or without IRS, protected against Plasmodium falciparum infection and uncomplicated clinical cases (UCC) of malaria in Benin. A case-control study was conducted, encompassing all age groups, in the urban area of Djougou and the rural area of Cobly. A cross-sectional survey was conducted that included 2080 individuals in the urban area and 2770 individuals in the rural area. In the urban area, sleeping under LLINs did not confer significant protection against malaria infection and UCC when compared to no intervention. However, certain neighbourhoods benefited from a notable reduction in infection rates ranging from 65% to 85%. In the rural area, the use of LLINs alone, IRS alone, or their combination did not provide additional protection compared to no intervention. IRS alone and LLINs combined with IRS provided 61% and 65% protection against malaria infection, respectively, compared to LLINs alone. The effectiveness of IRS alone and LLINs combined with IRS against UCC was 52% and 54%, respectively, when compared to LLINs alone. In both urban and rural areas, the use of LLINs alone, IRS alone, and their combination did not demonstrate significant individual protection against malaria infection and clinical cases when compared to no intervention. In the conditions of this study, LLINs combined or not with IRS are not effective enough to eliminate malaria. In addition to the interventions, this study identified factors associated with malaria in Benin as housing design, neglected social groups like gender-marginalised individuals and adolescents, and socio-economic conditions acting as barriers to effective malaria prevention. Addressing these factors is crucial in order to facilitate malaria elimination efforts in sub-Saharan Africa.

4.
PLoS One ; 18(9): e0291755, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37729177

RESUMO

BACKGROUND: Long-lasting insecticidal bed nets (LLINs) are a key measure for preventing malaria and their evaluation is coordinated by the World Health Organization Pesticide Evaluation Scheme (WHOPES). LifeNet® was granted WHOPES time-limited interim recommendation in 2011 after successful Phase I and Phase II evaluations. Here, we evaluated the durability and community acceptance of LifeNet® in a Phase III trial from June 2014 to June 2017 in Benin rural area. METHODS: A prospective longitudinal, cluster-randomized, controlled trial with households as the unit of observation was designed to assess the performance of LifeNet® over a three-year period, using a WHOPES fully recommended LLIN (PermaNet® 2.0) as a positive control. The primary outcomes were the bioassay performance using WHO cone assays and tunnel tests, the insecticide content and physical integrity. RESULTS: At baseline, 100% of LLINs were within the tolerance limits of their target deltamethrin concentrations. By 36 months only 17.3% of LifeNet® and 8.5% of PermaNet® LLINs still were within their target deltamethrin concentrations. Despite these low rates, 100% of both LLINs meet WHO efficacy criteria (≥ 80% mortality or ≥ 95% knockdown or tunnel test criteria of ≥ 80% mortality or ≥ 90% blood-feeding inhibition) after 36 months using WHO cone bio-assays and tunnel tests. The proportion of LLINs in good physical condition was 33% for LifeNet® and 29% for PermaNet® after 36 months. After 36 M the survivorship was 21% and 26% for LifeNet® and PermaNet® respectively. Although both LLINs were well accepted by the population, complaints of side effects were significantly higher among LifeNet® users than PermaNet® ones. CONCLUSION: LifeNet® LLINs did meet WHO criteria for bio-efficacy throughout the study period and were well accepted by the population. This is an important step towards getting a full WHO recommendation for use in malaria endemic countries.


Assuntos
Inseticidas , Praguicidas , Piretrinas , Polipropilenos , Benin , Estudos Prospectivos , Inseticidas/farmacologia , Piretrinas/farmacologia
5.
BMC Public Health ; 22(1): 1754, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36114483

RESUMO

BACKGROUND: Despite a global decrease in malaria burden worldwide, malaria remains a major public health concern, especially in Benin children, the most vulnerable group. A better understanding of malaria's spatial and age-dependent characteristics can help provide durable disease control and elimination. This study aimed to analyze the spatial distribution of Plasmodium falciparum malaria infection and disease among children under five years of age in Benin, West Africa. METHODS: A cross-sectional epidemiological and clinical survey was conducted using parasitological examination and rapid diagnostic tests (RDT) in Benin. Interviews were done with 10,367 children from 72 villages across two health districts in Benin. The prevalence of infection and clinical cases was estimated according to age. A Bayesian spatial binomial model was used to estimate the prevalence of malaria infection, and clinical cases were adjusted for environmental and demographic covariates. It was implemented in R using Integrated Nested Laplace Approximations (INLA) and Stochastic Partial Differentiation Equations (SPDE) techniques. RESULTS: The prevalence of P. falciparum infection was moderate in the south (34.6%) of Benin and high in the northern region (77.5%). In the south, the prevalence of P. falciparum infection and clinical malaria cases were similar according to age. In northern Benin children under six months of age were less frequently infected than children aged 6-11, 12-23, 24-60 months, (p < 0.0001) and had the lowest risk of malaria cases compared to the other age groups (6-12), (13-23) and (24-60): OR = 3.66 [2.21-6.05], OR = 3.66 [2.21-6.04], and OR = 2.83 [1.77-4.54] respectively (p < 0.0001). Spatial model prediction showed more heterogeneity in the south than in the north but a higher risk of malaria infection and clinical cases in the north than in the south. CONCLUSION: Integrated and periodic risk mapping of Plasmodium falciparum infection and clinical cases will make interventions more evidence-based by showing progress or a lack in malaria control.


Assuntos
Malária Falciparum , Malária , África Ocidental , Teorema de Bayes , Benin/epidemiologia , Criança , Pré-Escolar , Estudos Transversais , Fácies , Humanos , Malária/epidemiologia , Malária Falciparum/diagnóstico , Malária Falciparum/epidemiologia
6.
Vet Parasitol Reg Stud Reports ; 34: 100773, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36041808

RESUMO

After intensive control efforts, human African trypanosomiasis (HAT) was declared eliminated in Côte d'Ivoire as a public health problem in December 2020 and the current objective is to achieve the interruption of the transmission (zero cases). Reaching this objective could be hindered by the existence of an animal reservoir of Trypanosoma (T.) brucei (b.) gambiense. In the framework of a study led in 2013 to assess the role of domestic animals in the epidemiology of HAT in the two last active foci from Côte d'Ivoire (Bonon and Sinfra), plasmas were sampled from four species of domestic animals for parasitological (microscopic examination by the buffy coat technique (BCT)), serological (immune trypanolysis (TL)) and molecular (specific PCR: TBR for T. brucei s.l., TCF for T. congolense forest type, TVW for T. vivax and PCR for T. b. gambiense) testing. In order to improve the understanding of the involvement/role of these animals in the transmission of T. b. gambiense, we have quantified in this study the IgG response to whole saliva extracts of Glossina palpalis gambiensis in order to perform an association analysis between anti-saliva responses and the positivity of diagnostic tests. Cattle and pigs had significantly higher rates of anti-tsetse saliva responses compared to goats and sheep (p < 0.01). In addition, the anti-tsetse saliva responses were strongly associated with the parasitology (BCT+), serology (TL+) and PCR (TBR+ and TCF+) results (p < 0.001). These associations indicate a high level of contacts between the positive/infected animals and tsetse flies. Our findings suggest that protecting cattle and pigs against tsetse bites could have a significant impact in reducing transmission of both animal and human trypanosome species, and advocates for a "One health" approach to better control African trypanosomosis in Côte d'Ivoire.


Assuntos
Doenças dos Bovinos , Doenças dos Ovinos , Doenças dos Suínos , Trypanosoma , Tripanossomíase Africana , Moscas Tsé-Tsé , Animais , Animais Domésticos , Formação de Anticorpos , Bovinos , Doenças dos Bovinos/parasitologia , Côte d'Ivoire/epidemiologia , Humanos , Ovinos , Suínos , Doenças dos Suínos/parasitologia , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/parasitologia , Tripanossomíase Africana/veterinária , Moscas Tsé-Tsé/parasitologia
7.
Parasit Vectors ; 15(1): 260, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35858924

RESUMO

BACKGROUND: The rapid worldwide spreading of Aedes aegypti and Aedes albopictus is expanding the risk of arboviral diseases transmission, pointing out the urgent need to improve monitoring and control of mosquito vector populations. Assessment of human-vector contact, currently estimated by classical entomological methods, is crucial to guide planning and implementation of control measures and evaluate transmission risk. Antibody responses to mosquito genus-specific salivary proteins are emerging as a convenient complementary tool for assessing host exposure to vectors. We previously showed that IgG responses to the Ae. albopictus 34k2 salivary protein (al34k2) allow detection of seasonal and geographic variation of human exposure to the tiger mosquito in two temperate areas of Northeast Italy. The main aim of this study was to confirm and extend these promising findings to tropical areas with ongoing arboviral transmission. METHODS: IgG responses to al34k2 and to the Ae. aegypti orthologous protein ae34k2 were measured by ELISA in cohorts of subjects only exposed to Ae. albopictus (Réunion Island), only exposed to Ae. aegypti (Bolivia) or unexposed to both these vectors (North of France). RESULTS AND CONCLUSION: Anti-al34k2 IgG levels were significantly higher in sera of individuals from Réunion Island than in unexposed controls, indicating that al34k2 may be a convenient and reliable proxy for whole saliva or salivary gland extracts as an indicator of human exposure to Ae. albopictus. Bolivian subjects, exposed to bites of Ae. aegypti, carried in their sera IgG recognizing the Ae. albopictus al34k2 protein, suggesting that this salivary antigen can also detect, even though with low sensitivity, human exposure to Ae. aegypti. On the contrary, due to the high background observed in unexposed controls, the recombinant ae34k2 appeared not suitable for the evaluation of human exposure to Aedes mosquitoes. Overall, this study confirmed the suitability of anti-al34k2 IgG responses as a specific biomarker of human exposure to Ae. albopictus and, to a certain extent, to Ae. aegypti. Immunoassays based on al34k2 are expected to be especially effective in areas where Ae. albopictus is the main arboviral vector but may also be useful in areas where Ae. albopictus and Ae. aegypti coexist.


Assuntos
Aedes , Arbovírus , Aedes/fisiologia , Animais , Biomarcadores , Bolívia , Humanos , Imunoglobulina G , Proteínas de Insetos/genética , Mosquitos Vetores , Reunião , Proteínas e Peptídeos Salivares
8.
Med Vet Entomol ; 36(3): 329-337, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35352845

RESUMO

Dengue and yellow fever are prevalent in Côte d'Ivoire and Aedes (Stegomyia) aegypti (Linnaeus), (Diptera: Culicidae), is known as the main vector. We aimed to assess seasonal variation and spatial heterogeneity in the transmission of both arbovirus diseases in Abidjan. Entomological surveys targeting larvae of A. aegypti, were carried out between November 2015 and August 2016 covering the four climatic seasons including a cohort of 100 houses randomly selected in three neighbourhoods. A. aegypti was the predominant species (96.6%) of mosquitoes resulting from the rearing of harvested larvae, and the only vector of dengue and yellow fever recorded during the study period. The highest proportion of water storage containers (45.5%) which represented the major breeding sites infested by the larvae of A. aegypti, was observed in Anoumabo. The house indices >5% and/or Breteau indices >20 recorded in each neighbourhood, during the different climatic seasons, indicated that there was, a high and permanent, heterogeneity in the transmission risk of dengue and yellow fever between the three neighbourhoods. In terms of transmission risk, Anoumabo was the neighbourhood with the highest risk compared to the two others, then, particular attention should be paid to this site in terms of surveillance by vector control programme in Abidjan.


Assuntos
Aedes , Dengue , Febre Amarela , Animais , Côte d'Ivoire/epidemiologia , Dengue/epidemiologia , Dengue/veterinária , Humanos , Larva , Mosquitos Vetores , Estações do Ano , Febre Amarela/epidemiologia , Febre Amarela/veterinária
9.
PLoS Negl Trop Dis ; 15(12): e0010004, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34898609

RESUMO

BACKGROUND: Culex mosquitoes are vectors for a variety of pathogens of public health concern. New indicators of exposure to Culex bites are needed to evaluate the risk of transmission of associated pathogens and to assess the efficacy of vector control strategies. An alternative to entomological indices is the serological measure of antibodies specific to mosquito salivary antigens. This study investigated whether the human IgG response to both the salivary gland extract and the 30 kDa salivary protein of Culex quinquefasciatus may represent a proxy of human exposure to Culex bites. METHODOLOGY/PRINCIPAL FINDINGS: A multidisciplinary survey was conducted with children aged 1 to 14 years living in neighborhoods with varying exposure to Culex quinquefasciatus in the city of Bouaké, Côte d'Ivoire. Children living in sites with high exposure to Cx quinquefasciatus had a significantly higher IgG response to both salivary antigens compared with children living in the control site where only very few Culex were recorded. Moreover, children from any Culex-high exposed sites had significantly higher IgG responses only to the salivary gland extract compared with children from the control village, whereas no difference was noted in the anti-30 kDa IgG response. No significant differences were noted in the specific IgG responses between age and gender. Sites and the use of a bed net were associated with the level of IgG response to the salivary gland extract and to the 30 kDa antigen, respectively. CONCLUSIONS/SIGNIFICANCE: These findings suggest that the IgG response to Culex salivary gland extracts is suitable as proxy of exposure; however, the specificity to the Culex genus needs further investigation. The lower antigenicity of the 30 kDa recombinant protein represents a limitation to its use. The high specificity of this protein to the Culex genus makes it an attractive candidate and other specific antibody responses might be more relevant as a biomarker of exposure. These epidemiological observations may form a starting point for additional work on developing serological biomarkers of Culex exposure.


Assuntos
Biomarcadores/sangue , Culex/imunologia , Imunoglobulina G/sangue , Mordeduras e Picadas de Insetos/sangue , Proteínas e Peptídeos Salivares/imunologia , Adolescente , Animais , Criança , Pré-Escolar , Côte d'Ivoire , Culex/fisiologia , Feminino , Humanos , Lactente , Mordeduras e Picadas de Insetos/parasitologia , Masculino , Projetos Piloto , Glândulas Salivares/imunologia
10.
Trop Med Infect Dis ; 6(4)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34698307

RESUMO

Humoral immunity to Plasmodium falciparum is acquired after repeated infections, and can lead to clinical protection. This study aimed to evaluate how human-, parasite-, and environment-related determinants can modulate the dynamics of IgG responses to Plasmodium falciparum after an infection. Individuals (n = 68, average age = 8.2 years) with uncomplicated malaria were treated with ACT and followed up for 42 days. IgG responses to P. falciparum merozoite antigens (PfMSP1, PfMSP3, PfAMA1, PfGLURP-R0), to whole schizont extract (PfSchz), and to Anopheles gSG6-P1 and Aedes Nterm-34 kDa salivary peptides were measured. Regression analyses were used to identify factors that influence the dynamics of IgG response to P. falciparum antigen between D0 and D42, including demographic and biological factors and the level of exposure to mosquito bites. The dynamics of IgG response to P. falciparum differed according to the antigen. According to multivariate analysis, IgG responses to PfSchz and to PfGLURP-R0 appear to be affected by exposure to Aedes saliva and are associated with age, parasite density, and anti-Plasmodium pre-existing immune response at study inclusion. The present work shows that human exposure to Aedes saliva may contribute, in addition to other factors, to the regulation of anti-Plasmodium immune responses during a natural infection.

11.
Parasitol Res ; 120(11): 3663-3671, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34586479

RESUMO

Agroecosystems have been associated with risk of malaria. The aim of this study was to determine the relationship between three agroecosystems: (i) rubber plantation (RP); (ii) oil palm plantation (OPP); (iii) no cash crop plantation (NCCP) and the prevalence of Plasmodium falciparum infection among children living in the Aboisso region. In the three villages within (Ehania-V5) or close (N'zikro) or far from (Ayébo) to each agroecosystem (RP, OPP, and NCCP), two cross-sectional parasitological surveys were carried out during the dry and the peak of the long wet seasons. A total of 586 children aged 1-14 years were recruited in the three villages to determine the prevalence of malaria using conventional microscopy. Plasmodium falciparum was the dominant species with an overall infection prevalence of 40.8%. There was a significant difference in prevalence between agroecosystems, during both the dry (p = 0.002) and wet seasons (p < 0.001), which was higher in agricultural settings compared with the NCCP environment, whatever the season. The prevalence of P. falciparum infection increased from the dry to the wet season in agricultural settings (RP and OPP), whereas no difference was noted for NCCP. Less than 18% of children use insecticide-treated nets (ITNs) in the three villages, ranging from 6 (in RP) to 30% (in OPP). Multivariate analysis indicated that age (1-4; 5-9; and 10-14 years) was not associated with malaria risk, but the season and living in agricultural villages were associated with a greater risk of malaria infection. Risk of malaria exposure was fourfold higher in children from agricultural villages than their counterpart from the non-agricultural area. Our findings highlight significant variations in the prevalence of P. falciparum according to agroecosystem and season. The findings will be useful in designing and implementing malaria control interventions by the National Malaria Control Program.


Assuntos
Inseticidas , Malária Falciparum , Criança , Côte d'Ivoire/epidemiologia , Estudos Transversais , Humanos , Malária Falciparum/epidemiologia , Malária Falciparum/prevenção & controle , Plasmodium falciparum , Prevalência , Estações do Ano
12.
Vector Borne Zoonotic Dis ; 21(10): 769-776, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34252330

RESUMO

Although the urban areas of Abidjan, Côte d'Ivoire have faced recurrent outbreaks of Aedes-borne arboviruses, the seasonal dynamics of local populations of the key vector Aedes aegypti remained still underexplored for an effective vector control. The current study thus assessed the seasonal dynamics and the spatial distribution of Ae. aegypti in three neighborhoods of Abidjan city. Aedes eggs were collected using ovitraps in three different neighborhoods (Anoumambo, Bromakoté, and Petit-Bassam) during the four climatic seasons of Abidjan. Aedes egg samples were immersed into distilled water, and emerged larvae were reared until the adult stage for species morphological identification. Spatial autocorrelation was measured with the Moran's Index, and areas with high egg abundance were identified. In total, 3837 eggs were collected providing 1882 adult mosquitoes in the 3 neighborhoods. All the specimens belonged to only one Aedes species, Ae. aegypti. The average of 15.89 eggs per ovitrap, 13.67 eggs per ovitrap, and 19.87 eggs per ovitrap were obtained in Anoumambo, Bromakoté, and Petit-Bassam, respectively, with no statistical difference between the three sites. A higher abundance of Ae. aegypti was observed during the long rainy season and the short dry season. The Moran analysis showed a clustered distribution of Ae. aegypti eggs during the long rainy season in the three sites and a random spatial distribution during the short dry season. Ovitraps with high number of eggs were aggregated in the peripheral part (near to the lagoon) of Anoumambo and Petit-Bassam in central Bromakoté and extending along the railway during the long rainy season. This study revealed a heterogeneous potential risk of transmission of arbovirus according to neighborhood. It provided data to better understand Ae. aegypti ecology to select appropriate periods and places for Aedes vector control actions and surveillance of arboviruses in Abidjan.


Assuntos
Aedes , Arbovírus , Animais , Côte d'Ivoire , Mosquitos Vetores , Estações do Ano
13.
Open Forum Infect Dis ; 8(2): ofaa635, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33553475

RESUMO

BACKGROUND: Malaria is still a major public health concern in Côte d'Ivoire despite mass distribution of long-lasting insecticidal nets (LLINs) as a key preventive strategy. This study intended to evaluate the operational effectiveness of LLINs on the level of human-vector contact using 1 antibody-based biomarker of exposure to Anopheles in urban areas. METHODS: This cross-sectional study collected socio-demographic data and use of LLINs from 9 neighborhoods in the city of Bouaké (Côte d'Ivoire). Dry blood spots performed in children aged >6 months and adults were used to evaluate immunoglobulin G (IgG) responses to the Anopheles gSG6-P1 salivary peptide. RESULTS: IgG response levels to the salivary peptide were significantly lower in individuals who declared having "always" (n = 270) slept under an LLIN compared with those who had "often" (n = 2087) and "never" (n = 88) slept under an LLIN (P < .0001). IgG response levels to gSG6-P1 between those who declared having "always" and "not always" slept under an LLIN varied according to neighborhood, socio-professional category, and age group. CONCLUSIONS: The human IgG level to this gSG6-P1 salivary peptide could be a useful tool to evaluate the actual effectiveness of LLINs and help design behavioral change interventions that are crucial for sustaining universal coverage.

14.
Sci Total Environ ; 743: 140631, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32758822

RESUMO

Cancer is a major public health issue and represents a significant burden in countries with different levels of economic wealth. In parallel, mosquito-borne infectious diseases represent a growing problem causing significant morbidity and mortality worldwide. Acknowledging that these two concerns are both globally distributed, it is essential to investigate whether they have a reciprocal connection that can fuel their respective burdens. Unfortunately, very few studies have examined the link between these two threats. This review provides an overview of the possible links between mosquitoes, mosquito-borne infectious diseases and cancer. We first focus on the impact of mosquitoes on carcinogenesis in humans including the transmission of oncogenic pathogens through mosquitoes, the immune reactions following mosquito bites, the presence of non-oncogenic mosquito-borne pathogens, and the direct transmission of cancer cells. The second part of this review deals with the direct or indirect consequences of cancer in humans on mosquito behaviour. Thirdly, we discuss the potential impacts that natural cancers in mosquitoes can have on their life history traits and therefore on their vector capacity. Finally, we discuss the most promising research avenues on this topic and the integrative public health strategies that could be envisioned in this context.


Assuntos
Mosquitos Vetores , Neoplasias , Animais , Humanos
15.
Malar J ; 19(1): 83, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32085710

RESUMO

BACKGROUND: In malaria-endemic areas, human populations are frequently exposed to immunomodulatory salivary components injected during mosquito blood feeding. The consequences on pathogen-specific immune responses are not well known. This study evaluated and compared the humoral responses specific to merozoite stage vaccine candidates of Plasmodium falciparum, in children differentially exposed to Anopheles bites in a natural setting. METHODS: The cross-sectional study was carried out in Bouaké (Côte d'Ivoire) where entomological data and blood samples from children (0-14 years) were collected in two sites with similar malaria prevalence. Antibody (IgG, IgG1, IgG3) responses to PfAMA1 and PfMSP1 were evaluated by ELISA. Univariate and multivariate analysis were performed to assess the relationship between the immune responses to P. falciparum antigens and exposure to Anopheles bites in the total cohort and in each site, separately. The individual level of exposure to Anopheles bites was evaluated by quantifying specific IgG response to the Anopheles gSG6-P1 salivary peptide, which represents a proxy of Anopheles exposure. RESULTS: The anti-Plasmodium humoral responses were different according to the level of exposure of children, with those highly exposed to Anopheles presenting significantly lower antibody responses to PfMSP1 in total population (IgG and IgG3) and in Petessou village (IgG, IgG1, IgG3). No significant difference was seen for PfAMA1 antigen between children differently exposed to Anopheles. In Dar-es-Salam, a neighbourhood where a high Culex density was reported, children presented very low antibody levels specific to both antigens, and no difference according to the exposure to Anopheles bites was found. CONCLUSION: These findings may suggest that immunomodulatory components of Anopheles saliva, in addition to other factors, may participate to the modulation of the humoral response specific to Plasmodium merozoite stage antigens. This epidemiological observation may form a starting point for additional work to decipher the role of mosquito saliva on the modulation of the anti-Plasmodium acquired immunity and clinical protection in combining both field and ex vivo immunological studies.


Assuntos
Anopheles/fisiologia , Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/imunologia , Mordeduras e Picadas de Insetos , Plasmodium falciparum/imunologia , Adolescente , Animais , Formação de Anticorpos , Criança , Pré-Escolar , Côte d'Ivoire , Estudos Transversais , Feminino , Humanos , Lactente , Malária Falciparum/imunologia , Masculino
16.
J Infect Dis ; 220(7): 1199-1208, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31152664

RESUMO

BACKGROUND: Anarchic and poorly controlled urbanization led to an increased risk of mosquito-borne diseases (MBD) in many African cities. Here, we evaluate the spatial heterogeneity of human exposure to malaria and arboviral disease vectors in an urban area of northern Senegal, using antibody-based biomarkers of exposure to Anopheles and Aedes mosquito bites. METHODS: A cross-sectional study was undertaken during the rainy season of 2014 in 4 neighborhoods of Saint-Louis, a city in northern Senegal. Among children aged 6-59 months in each neighborhood, the dried blood spot technique was used to evaluate immunoglobulin G (IgG) responses to both gSG6-P1 (Anopheles) and Nterm-34-kDa (Aedes) salivary peptides as validated biomarkers of respective mosquito bite exposure. RESULTS: IgG response levels to gSG6-P1 and Nterm-34-kDa salivary peptides varied significantly between the 4 neighborhoods (P < .0001). The level of exposure to Aedes bites also varied according to household access to sanitation services (P = .027), whereas that of exposure to Anopheles bites varied according to insecticide-treated bed net use (P = .006). In addition, spatial clusters of high contact between humans and mosquitoes were identified inside 3 neighborhoods. CONCLUSIONS: Antibody-based biomarkers of exposure to Anopheles and Aedes mosquito bites could be helpful tools for evaluating the heterogeneity of exposure to malaria and arboviral disease vectors by national control programs.


Assuntos
Aedes/imunologia , Anopheles/imunologia , Mordeduras e Picadas de Insetos/imunologia , Proteínas de Insetos/imunologia , Malária/epidemiologia , Mosquitos Vetores/imunologia , Proteínas e Peptídeos Salivares/imunologia , Animais , Biomarcadores/sangue , Pré-Escolar , Cidades , Estudos Transversais , Países em Desenvolvimento , Teste em Amostras de Sangue Seco , Feminino , Humanos , Imunoglobulina G/sangue , Incidência , Lactente , Malária/transmissão , Masculino , Plasmodium , Senegal/epidemiologia
17.
Parasite Epidemiol Control ; 5: e00102, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30923754

RESUMO

Environmental changes related to agricultural practices and activities can impact malaria transmission. In the objective to evaluate this impact on the human-vector contact, the level of human exposure to Anopheles vector bites was assess by an immuno-epidemiological indicator based on the assessment of the human IgG antibody response to the Anopheles gambiae gSG6-P1 salivary peptide, previously validated as a pertinent biomarker. Two cross-sectional surveys were carried out in the dry and rainy season in three villages with intensive agricultural plantations (N'Zikro with rubber cultivation, Ehania-V5 and Ehania-V1 with palm oil exploitation) and in a control village without plantations (Ayébo). Overall, 775 blood samples were collected in filter papers from children aged 1 to 14 years-old for immunological analysis by ELISA. The IgG levels to the gSG6-P1 salivary peptide significantly differed between studied villages both in the dry and the rainy seasons (P < 0.0001) and were higher in agricultural villages compared to the control area. In particular, the level of specific IgG in Ehania-V5, located in the heart of palm oil plantations, was higher compared to other agricultural villages. Interestingly, the level of specific IgG levels classically increased between the dry and the rainy season in the control village (P < 0.0001) whereas it remained high in the dry season as observed in the rainy season in agricultural villages. The present study indicated that rubber and oil palm plantations could maintain a high level of human exposure to Anopheles bites during both the dry and rainy seasons. These agricultural activities could therefore represent a permanent factor of malaria transmission risk.

18.
Malar J ; 18(1): 68, 2019 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-30857543

RESUMO

BACKGROUND: In some African cities, urban malaria is a threat to the health and welfare of city dwellers. To improve the control of the disease, it is critical to identify neighbourhoods where the risk of malaria transmission is the highest. This study aims to evaluate the heterogeneity of malaria transmission risk in one city (Bouaké) in a West African country (Côte d'Ivoire) that presents several levels of urbanization. METHODS: Two cross-sectional studies were conducted in three neighbourhoods (Dar-es-Salam, Kennedy and N'gattakro) in Bouaké during both the rainy and dry seasons. Data on insecticide-treated net (ITN) use and blood samples were collected from children aged between 6 months and 15 years to determine the parasite density and the prevalence of Plasmodium falciparum and the level of IgG against the Anopheles gSG6-P1 salivary peptide, used as the biomarker of Anopheles bite exposure. RESULTS: The specific IgG levels to the gSG6-P1 salivary peptide in the rainy season were significantly higher compared to the dry season in all neighbourhoods studied (all p < 0.001). Interestingly, these specific IgG levels did not differ between neighbourhoods during the rainy season, whereas significant differences in IgG level were observed in the dry season (p = 0.034). ITN use could be a major factor of variation in the specific IgG level. Nevertheless, no difference in specific IgG levels to the gSG6-P1 salivary peptide was observed between children who declared "always" versus "never" sleeping under an ITN in each neighbourhood. In addition, the prevalence of P. falciparum in the whole population and immune responders was significantly different between neighbourhoods in each season (p < 0.0001). CONCLUSION: This study highlights the high risk of malaria exposure in African urban settings and the high heterogeneity of child exposure to the Anopheles vector between neighbourhoods in the same city. The Anopheles gSG6-P1 salivary peptide could be a suitable biomarker to accurately and quantitatively assess the risk of malaria transmission in urban areas.


Assuntos
Transmissão de Doença Infecciosa , Exposição Ambiental , Malária Falciparum/epidemiologia , Malária Falciparum/transmissão , Mosquitos Vetores/crescimento & desenvolvimento , População Urbana , Adolescente , Animais , Anticorpos Antiprotozoários/sangue , Criança , Pré-Escolar , Cidades/epidemiologia , Côte d'Ivoire/epidemiologia , Estudos Transversais , Utilização de Equipamentos e Suprimentos , Feminino , Humanos , Imunoglobulina G/sangue , Lactente , Proteínas de Insetos/imunologia , Mosquiteiros Tratados com Inseticida/estatística & dados numéricos , Masculino , Plasmodium falciparum/imunologia , Plasmodium falciparum/isolamento & purificação , Medição de Risco , Proteínas e Peptídeos Salivares/imunologia , Estações do Ano , Estudos Soroepidemiológicos
19.
Infect Drug Resist ; 11: 2031-2038, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30464545

RESUMO

INTRODUCTION: Parasite clearance is useful to detect artemisinin resistance. The aim of this study was to investigate parasite clearance in patients treated with artesunate + amodiaquine (AS + AQ) and artemether + lumefantrine (AL): the two artemisinin-based combination therapies (ACTs) recommended in the first-line treatment of uncomplicated malaria in Côte d'Ivoire. METHODS: This study was conducted in Bouaké, Côte d'Ivoire, from April to June 2016. Patients aged at least 6 months with uncomplicated malaria and treated with AS + AQ or AL were hospitalized for 3 days, and follow-up assessments were performed on days 3, 7, 14, 21, 28, 35, and 42. Blood smears were collected at the time of screening, pre-dose, and 6-hour intervals following the first dose of administration until two consecutive negative smears were recorded, thereafter at day 3 and follow-up visits. Parasite clearance was determined using the Worldwide Antimalarial Resistance Network's parasite clearance estimator. The primary end points were parasite clearance rate and time. RESULTS: A total of 120 patients (57 in the AS + AQ group and 63 in the AL group) were randomized among 298 patients screened. The median parasite clearance time was 30 hours (IQR, 24-36 hours), for each ACT. The median parasite clearance rate had a slope half-life of 2.36 hours (IQR, 1.85-2.88 hours) and 2.23 hours (IQR, 1.74-2.63 hours) for AS + AQ and AL, respectively. The polymerase chain reaction-corrected adequate clinical and parasitological response was 100% and 98.07% at day 42 for AS + AQ and AL, respectively. CONCLUSION: Patients treated with AS + AQ and AL had cleared parasites rapidly. ACTs are still efficacious in Bouaké, Côte d'Ivoire, but continued efficacy monitoring of ACTs is needed.

20.
Trop Med Infect Dis ; 3(3)2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30274476

RESUMO

Arthropod-borne viruses (arboviruses) such as dengue virus (DENV), chikungunya virus (CHIKV), Zika virus (ZIKV), and yellow fever virus (YFV) are the most important 'emerging pathogens' because of their geographic spread and their increasing impact on vulnerable human populations. To fight against these arboviruses, vector control strategies (VCS) remain one of the most valuable means. However, their implementation and monitoring are labour intensive and difficult to sustain on large scales, especially when transmission and Aedes mosquito densities are low. To increase the efficacy of VCS, current entomological methods should be improved by new complementary tools which measure the risk of arthropod-borne diseases' transmission. The study of human⁻Aedes immunological relationships can provide new promising serological tools, namely antibody-based biomarkers, allowing to accurately estimate the human⁻Aedes contact and consequently, the risk of transmission of arboviruses and the effectiveness of VCS. This review focuses on studies highlighting the concept, techniques, and methods used to develop and validate specific candidate biomarkers of human exposure to Aedes bites. Potential applications of such antibody-based biomarkers of exposure to Aedes vector bites in the field of operational research are also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...