Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3196, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609363

RESUMO

The dorsal hippocampus (dHPC) is a key brain region for the expression of spatial memories, such as navigating towards a learned reward location. The nucleus accumbens (NAc) is a prominent projection target of dHPC and implicated in value-based action selection. Yet, the contents of the dHPC→NAc information stream and their acute role in behavior remain largely unknown. Here, we found that optogenetic stimulation of the dHPC→NAc pathway while mice navigated towards a learned reward location was both necessary and sufficient for spatial memory-related appetitive behaviors. To understand the task-relevant coding properties of individual NAc-projecting hippocampal neurons (dHPC→NAc), we used in vivo dual-color two-photon imaging. In contrast to other dHPC neurons, the dHPC→NAc subpopulation contained more place cells, with enriched spatial tuning properties. This subpopulation also showed enhanced coding of non-spatial task-relevant behaviors such as deceleration and appetitive licking. A generalized linear model revealed enhanced conjunctive coding in dHPC→NAc neurons which improved the identification of the reward zone. We propose that dHPC routes specific reward-related spatial and behavioral state information to guide NAc action selection.


Assuntos
Objetivos , Hipocampo , Éteres Fosfolipídicos , Animais , Camundongos , Comportamento Apetitivo , Memória Espacial
2.
Neuron ; 112(6): 1020-1032.e7, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38266645

RESUMO

To survive, animals need to balance their exploratory drive with their need for safety. Subcortical circuits play an important role in initiating and modulating movement based on external demands and the internal state of the animal; however, how motivation and onset of locomotion are regulated remain largely unresolved. Here, we show that a glutamatergic pathway from the medial septum and diagonal band of Broca (MSDB) to the ventral tegmental area (VTA) controls exploratory locomotor behavior in mice. Using a self-supervised machine learning approach, we found an overrepresentation of exploratory actions, such as sniffing, whisking, and rearing, when this projection is optogenetically activated. Mechanistically, this role relies on glutamatergic MSDB projections that monosynaptically target a subset of both glutamatergic and dopaminergic VTA neurons. Taken together, we identified a glutamatergic basal forebrain to midbrain circuit that initiates locomotor activity and contributes to the expression of exploration-associated behavior.


Assuntos
Comportamento Exploratório , Área Tegmentar Ventral , Camundongos , Animais , Área Tegmentar Ventral/fisiologia , Neurônios Dopaminérgicos/metabolismo , Motivação
3.
Nat Commun ; 14(1): 8090, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062015

RESUMO

The sensory neocortex has been suggested to be a substrate for long-term memory storage, yet which exact single cells could be specific candidates underlying such long-term memory storage remained neither known nor visible for over a century. Here, using a combination of day-by-day two-photon Ca2+ imaging and targeted single-cell loose-patch recording in an auditory associative learning paradigm with composite sounds in male mice, we reveal sparsely distributed neurons in layer 2/3 of auditory cortex emerged step-wise from quiescence into bursting mode, which then invariably expressed holistic information of the learned composite sounds, referred to as holistic bursting (HB) cells. Notably, it was not shuffled populations but the same sparse HB cells that embodied the behavioral relevance of the learned composite sounds, pinpointing HB cells as physiologically-defined single-cell candidates of an engram underlying long-term memory storage in auditory cortex.


Assuntos
Córtex Auditivo , Neocórtex , Masculino , Camundongos , Animais , Córtex Auditivo/fisiologia , Aprendizagem/fisiologia , Memória de Longo Prazo , Neocórtex/fisiologia , Neurônios/fisiologia , Percepção Auditiva/fisiologia
4.
MAGMA ; 36(2): 191-210, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37029886

RESUMO

Multiple sites within Germany operate human MRI systems with magnetic fields either at 7 Tesla or 9.4 Tesla. In 2013, these sites formed a network to facilitate and harmonize the research being conducted at the different sites and make this technology available to a larger community of researchers and clinicians not only within Germany, but also worldwide. The German Ultrahigh Field Imaging (GUFI) network has defined a strategic goal to establish a 14 Tesla whole-body human MRI system as a national research resource in Germany as the next progression in magnetic field strength. This paper summarizes the history of this initiative, the current status, the motivation for pursuing MR imaging and spectroscopy at such a high magnetic field strength, and the technical and funding challenges involved. It focuses on the scientific and science policy process from the perspective in Germany, and is not intended to be a comprehensive systematic review of the benefits and technical challenges of higher field strengths.


Assuntos
Imageamento por Ressonância Magnética , Imagem Corporal Total , Humanos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Imagem Corporal Total/métodos , Alemanha , Campos Magnéticos
5.
J Physiol ; 601(15): 3403-3437, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36734280

RESUMO

Neuronal hyperexcitability is a pathological characteristic of Alzheimer's disease (AD). Three main mechanisms have been proposed to explain it: (i) dendritic degeneration leading to increased input resistance, (ii) ion channel changes leading to enhanced intrinsic excitability, and (iii) synaptic changes leading to excitation-inhibition (E/I) imbalance. However, the relative contribution of these mechanisms is not fully understood. Therefore, we performed biophysically realistic multi-compartmental modelling of neuronal excitability in reconstructed CA1 pyramidal neurons from wild-type and APP/PS1 mice, a well-established animal model of AD. We show that, for synaptic activation, the excitability-promoting effects of dendritic degeneration are cancelled out by decreased excitation due to synaptic loss. We find an interesting balance between excitability regulation and an enhanced degeneration in the basal dendrites of APP/PS1 cells, potentially leading to increased excitation by the apical but decreased excitation by the basal Schaffer collateral pathway. Furthermore, our simulations reveal three pathomechanistic scenarios that can account for the experimentally observed increase in firing and bursting of CA1 pyramidal neurons in APP/PS1 mice: scenario 1: enhanced E/I ratio; scenario 2: alteration of intrinsic ion channels (IAHP down-regulated; INap , INa and ICaT up-regulated) in addition to enhanced E/I ratio; and scenario 3: increased excitatory burst input. Our work supports the hypothesis that pathological network and ion channel changes are major contributors to neuronal hyperexcitability in AD. Overall, our results are in line with the concept of multi-causality according to which multiple different disruptions are separately sufficient but no single particular disruption is necessary for neuronal hyperexcitability. KEY POINTS: This work presents simulations of synaptically driven responses in pyramidal cells (PCs) with Alzheimer's disease (AD)-related dendritic degeneration. Dendritic degeneration alone alters PC responses to layer-specific input but additional pathomechanistic scenarios are required to explain neuronal hyperexcitability in AD as follows. Possible scenario 1: AD-related increased excitatory input together with decreased inhibitory input (E/I imbalance) can lead to hyperexcitability in PCs. Possible scenario 2: changes in E/I balance combined with altered ion channel properties can account for hyperexcitability in AD. Possible scenario 3: burst hyperactivity of the surrounding network can explain hyperexcitability of PCs during AD.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Hipocampo/fisiologia , Neurônios/fisiologia , Células Piramidais/fisiologia , Canais Iônicos/metabolismo , Modelos Animais de Doenças
6.
EMBO J ; 42(4): e112453, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36594364

RESUMO

Synaptic dysfunction caused by soluble ß-amyloid peptide (Aß) is a hallmark of early-stage Alzheimer's disease (AD), and is tightly linked to cognitive decline. By yet unknown mechanisms, Aß suppresses the transcriptional activity of cAMP-responsive element-binding protein (CREB), a master regulator of cell survival and plasticity-related gene expression. Here, we report that Aß elicits nucleocytoplasmic trafficking of Jacob, a protein that connects a NMDA-receptor-derived signalosome to CREB, in AD patient brains and mouse hippocampal neurons. Aß-regulated trafficking of Jacob induces transcriptional inactivation of CREB leading to impairment and loss of synapses in mouse models of AD. The small chemical compound Nitarsone selectively hinders the assembly of a Jacob/LIM-only 4 (LMO4)/ Protein phosphatase 1 (PP1) signalosome and thereby restores CREB transcriptional activity. Nitarsone prevents impairment of synaptic plasticity as well as cognitive decline in mouse models of AD. Collectively, the data suggest targeting Jacob protein-induced CREB shutoff as a therapeutic avenue against early synaptic dysfunction in AD.


Assuntos
Doença de Alzheimer , Animais , Camundongos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Camundongos Transgênicos , Neurônios/metabolismo , Sinapses/metabolismo
7.
Commun Biol ; 5(1): 1267, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36400882

RESUMO

Quantification and detection of the hierarchical organization of behavior is a major challenge in neuroscience. Recent advances in markerless pose estimation enable the visualization of high-dimensional spatiotemporal behavioral dynamics of animal motion. However, robust and reliable technical approaches are needed to uncover underlying structure in these data and to segment behavior into discrete hierarchically organized motifs. Here, we present an unsupervised probabilistic deep learning framework that identifies behavioral structure from deep variational embeddings of animal motion (VAME). By using a mouse model of beta amyloidosis as a use case, we show that VAME not only identifies discrete behavioral motifs, but also captures a hierarchical representation of the motif's usage. The approach allows for the grouping of motifs into communities and the detection of differences in community-specific motif usage of individual mouse cohorts that were undetectable by human visual observation. Thus, we present a robust approach for the segmentation of animal motion that is applicable to a wide range of experimental setups, models and conditions without requiring supervised or a-priori human interference.


Assuntos
Comportamento Animal , Neurociências , Animais , Humanos , Movimento (Física)
8.
J Neurochem ; 157(6): 2128-2144, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33583024

RESUMO

Neuronal network dysfunction is a hallmark of Alzheimer's disease (AD). However, the underlying pathomechanisms remain unknown. We analyzed the hippocampal micronetwork in transgenic McGill-R-Thy1-APP rats (APPtg) at the beginning of extracellular amyloid beta (Aß) deposition. We established two-photon Ca2+ -imaging in vivo in the hippocampus of rats and found hyperactivity of CA1 neurons. Patch-clamp recordings in brain slices in vitro revealed increased neuronal input resistance and prolonged action potential width in CA1 pyramidal neurons. We did neither observe changes in synaptic inhibition, nor in excitation. Our data support the view that increased intrinsic excitability of CA1 neurons may precede inhibitory dysfunction at an early stage of Aß-deposition and disease progression.


Assuntos
Doença de Alzheimer/metabolismo , Modelos Animais de Doenças , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/metabolismo , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Feminino , Hipocampo/patologia , Masculino , Técnicas de Cultura de Órgãos , Ratos , Ratos Transgênicos
10.
Cell Death Differ ; 27(12): 3354-3373, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32641776

RESUMO

Dendritic spines are postsynaptic domains that shape structural and functional properties of neurons. Upon neuronal activity, Ca2+ transients trigger signaling cascades that determine the plastic remodeling of dendritic spines, which modulate learning and memory. Here, we study in mice the role of the intracellular Ca2+ channel Ryanodine Receptor 2 (RyR2) in synaptic plasticity and memory formation. We demonstrate that loss of RyR2 in pyramidal neurons of the hippocampus impairs maintenance and activity-evoked structural plasticity of dendritic spines during memory acquisition. Furthermore, post-developmental deletion of RyR2 causes loss of excitatory synapses, dendritic sparsification, overcompensatory excitability, network hyperactivity and disruption of spatially tuned place cells. Altogether, our data underpin RyR2 as a link between spine remodeling, circuitry dysfunction and memory acquisition, which closely resemble pathological mechanisms observed in neurodegenerative disorders.


Assuntos
Espinhas Dendríticas/fisiologia , Hipocampo/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Sinapses/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasticidade Neuronal/fisiologia , Células Piramidais/metabolismo
11.
J Neurosci Methods ; 325: 108365, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31330160

RESUMO

An understanding of how the brain processes information requires knowledge of its underlying wiring diagrams, as well as insights into the relationship between circuit architecture and physiological function. Notably, rabies virus based single-cell genetic manipulations that can facilitate an experimental link between physiology and genetics have recently advanced the field of systems neuroscience. It allows capturing the synaptic and the anatomical receptive fields of individual neurons. Recently, the methodological portfolio has been upgraded by two novel approaches, single cell electroporation with genetically encoded Ca2+ sensors allowing for functionalized transsynaptic tracing and single cell targeted virus stamping. Especially the development of virus stamping provides a versatile solution for targeted single-cell infection of diverse cell types with different viruses at once, both in vitro and in vivo. Here we will summarize the latest developments in this rapidly moving field and provide a perspective for automated, quantitative analysis of single cell initiated connectomes.


Assuntos
Rede Nervosa , Técnicas de Rastreamento Neuroanatômico/métodos , Neurônios , Neurociências/métodos , Vírus da Raiva , Animais
12.
Neurobiol Learn Mem ; 154: 141-157, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29906573

RESUMO

Voltage-gated ion channels are critical for neuronal integration. Some of these channels, however, are misregulated in several neurological disorders, causing both gain- and loss-of-function channelopathies in neurons. Using several transgenic mouse models of Alzheimer's disease (AD), we find that sub-threshold voltage signals strongly influenced by hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels progressively deteriorate over chronological aging in hippocampal CA1 pyramidal neurons. The degraded signaling via HCN channels in the transgenic mice is accompanied by an age-related global loss of their non-uniform dendritic expression. Both the aberrant signaling via HCN channels and their mislocalization could be restored using a variety of pharmacological agents that target the endoplasmic reticulum (ER). Our rescue of the HCN channelopathy helps provide molecular details into the favorable outcomes of ER-targeting drugs on the pathogenesis and synaptic/cognitive deficits in AD mouse models, and implies that they might have beneficial effects on neurological disorders linked to HCN channelopathies.


Assuntos
Doença de Alzheimer/fisiopatologia , Região CA1 Hipocampal/fisiologia , Canalopatias/fisiopatologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/fisiologia , Plasticidade Neuronal , Células Piramidais/fisiologia , Potenciais de Ação , Envelhecimento , Animais , Região CA1 Hipocampal/ultraestrutura , Modelos Animais de Doenças , Retículo Endoplasmático/fisiologia , Feminino , Masculino , Camundongos Transgênicos , Células Piramidais/ultraestrutura
13.
Cell Tissue Res ; 373(3): 565-575, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29250747

RESUMO

The septo-hippocampal pathway adjusts CA1 network excitability to different behavioral states and is crucially involved in theta rhythmogenesis. In the medial septum, cholinergic, glutamatergic and GABAergic neurons form a highly interconnected local network. Neurons of these three classes project to glutamatergic pyramidal neurons and different subsets of GABAergic neurons in the hippocampal CA1 region. From there, GABAergic neurons project back to the medial septum and form a feedback loop between the two remote brain areas. In vivo, the firing of GABAergic medial septal neurons is theta modulated, while theta modulation is not observed in cholinergic neurons. One prominent feature of glutamatergic neurons is the correlation of their firing rates to the animals running speed. The cellular diversity, the high local interconnectivity and different activity patterns of medial septal neurons during different behaviors complicate the functional dissection of this network. New technical advances help to define specific functions of individual cell classes. In this review, we seek to highlight recent findings and elucidate functional implications of the septo-hippocampal connectivity on the microcircuit scale.


Assuntos
Hipocampo/anatomia & histologia , Hipocampo/fisiologia , Núcleos Septais/anatomia & histologia , Núcleos Septais/fisiologia , Animais , Comportamento/fisiologia , Neurônios Colinérgicos/metabolismo , Neurônios GABAérgicos/metabolismo , Humanos , Locomoção , Memória , Modelos Neurológicos , Células Piramidais/metabolismo , Ritmo Teta
15.
Nat Neurosci ; 20(1): 16-19, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27893726

RESUMO

The medial septum and diagonal band of Broca (MSDB) send glutamatergic axons to medial entorhinal cortex (MEC). We found that this pathway provides speed-correlated input to several MEC cell-types in layer 2/3. The speed signal is integrated most effectively by pyramidal cells but also excites stellate cells and interneurons. Thus, the MSDB conveys speed information that can be used by MEC neurons for spatial representation of self-location.


Assuntos
Córtex Entorrinal/fisiologia , Hipocampo/fisiologia , Locomoção/fisiologia , Neurônios/fisiologia , Transmissão Sináptica/fisiologia , Ácido gama-Aminobutírico/metabolismo , Animais , Axônios/fisiologia , Interneurônios/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Rede Nervosa/fisiologia , Células Piramidais/metabolismo
16.
Neuron ; 92(1): 114-125, 2016 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-27641495

RESUMO

Alzheimer's disease (AD) is characterized by cognitive decline and neuronal network dysfunction, but the underlying mechanisms remain unknown. In the hippocampus, microcircuit activity during learning and memory processes is tightly controlled by O-LM interneurons. Here, we investigated the effect of beta-amyloidosis on O-LM interneuron structural and functional connectivity, combining two-photon in vivo imaging of synaptic morphology, awake Ca2+ imaging, and retrograde mono-transsynaptic rabies tracing. We find severely impaired synaptic rewiring that occurs on the O-LM interneuron input and output level in a mouse model of AD. Synaptic rewiring that occurs upon fear learning on O-LM interneuron input level is affected in mice with AD-like pathology. This process requires the release of acetylcholine from septo-hippocampal projections. We identify decreased cholinergic action on O-LM interneurons in APP/PS1 mice as a key pathomechanism that contributes to memory impairment in a mouse model, with potential relevance for human AD.


Assuntos
Doença de Alzheimer/fisiopatologia , Interneurônios/fisiologia , Transtornos da Memória/fisiopatologia , Plasticidade Neuronal/fisiologia , Somatostatina/metabolismo , Acetilcolina/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/efeitos adversos , Precursor de Proteína beta-Amiloide/genética , Animais , Clozapina/análogos & derivados , Clozapina/farmacologia , Condicionamento Psicológico , Modelos Animais de Doenças , Medo , Glutamato Descarboxilase/genética , Hipocampo/metabolismo , Hipocampo/patologia , Hipocampo/fisiopatologia , Interneurônios/metabolismo , Interneurônios/patologia , Camundongos , Camundongos Transgênicos , Técnicas de Rastreamento Neuroanatômico , Somatostatina/genética , Sinapses/patologia , Sinapses/fisiologia
17.
Cell ; 165(7): 1568-1569, 2016 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-27315473

RESUMO

While some neurons are tuned to integrate fast and precisely timed inputs, others set behavioral states on much slower timescales. In this issue of Cell, Branco et al. demonstrate that body weight is regulated by hypothalamic neurons using a highly effective form of slow synaptic integration, which is mediated by the voltage gated sodium channel Nav1.7.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.7 , Neurônios , Canais de Sódio
18.
Acta Neuropathol ; 130(5): 619-31, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26439832

RESUMO

Pathological tau aggregation leads to filamentous tau inclusions and characterizes neurodegenerative tauopathies such as Alzheimer's disease and frontotemporal dementia and parkinsonism linked to chromosome 17. Tau aggregation coincides with clinical symptoms and is thought to mediate neurodegeneration. Transgenic mice overexpressing mutant human P301S tau exhibit many neuropathological features of human tauopathies including behavioral deficits and increased mortality. Here, we show that the di-phenyl-pyrazole anle138b binds to aggregated tau and inhibits tau aggregation in vitro and in vivo. Furthermore, anle138b treatment effectively ameliorates disease symptoms, increases survival time and improves cognition of tau transgenic PS19 mice. In addition, we found decreased synapse and neuron loss accompanied by a decreased gliosis in the hippocampus. Our results suggest that reducing tau aggregates with anle138b may represent an effective and promising approach for the treatment of human tauopathies.


Assuntos
Benzodioxóis/farmacologia , Fármacos Neuroprotetores/farmacologia , Pirazóis/farmacologia , Tauopatias/tratamento farmacológico , Proteínas tau/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Modelos Animais de Doenças , Progressão da Doença , Feminino , Gliose/tratamento farmacológico , Gliose/patologia , Gliose/fisiopatologia , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Hipocampo/fisiopatologia , Masculino , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Neurônios/fisiologia , Agregados Proteicos/efeitos dos fármacos , Distribuição Aleatória , Reconhecimento Psicológico/efeitos dos fármacos , Reconhecimento Psicológico/fisiologia , Tauopatias/patologia , Proteínas tau/genética
19.
Neuron ; 86(5): 1253-64, 2015 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-25982367

RESUMO

Before the onset of locomotion, the hippocampus undergoes a transition into an activity-state specialized for the processing of spatially related input. This brain-state transition is associated with increased firing rates of CA1 pyramidal neurons and the occurrence of theta oscillations, which both correlate with locomotion velocity. However, the neural circuit by which locomotor activity is linked to hippocampal oscillations and neuronal firing rates is unresolved. Here we reveal a septo-hippocampal circuit mediated by glutamatergic (VGluT2(+)) neurons that is activated before locomotion onset and that controls the initiation and velocity of locomotion as well as the entrainment of theta oscillations. Moreover, via septo-hippocampal projections onto alveus/oriens interneurons, this circuit regulates feedforward inhibition of Schaffer collateral and perforant path input to CA1 pyramidal neurons in a locomotion-dependent manner. With higher locomotion speed, the increased activity of medial septal VGluT2 neurons is translated into increased axo-somatic depolarization and higher firing rates of CA1 pyramidal neurons. VIDEO ABSTRACT.


Assuntos
Hipocampo/fisiologia , Locomoção/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Septo do Cérebro/fisiologia , Ritmo Teta/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Transgênicos
20.
Acta Neuropathol Commun ; 2: 175, 2014 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-25540024

RESUMO

Long before synaptic loss occurs in Alzheimer's disease significant harbingers of disease may be detected at the functional level. Here we examined if synaptic long-term potentiation is selectively disrupted prior to extracellular deposition of Aß in a very complete model of Alzheimer's disease amyloidosis, the McGill-R-Thy1-APP transgenic rat. Longitudinal studies in freely behaving animals revealed an age-dependent, relatively rapid-onset and persistent inhibition of long-term potentiation without a change in baseline synaptic transmission in the CA1 area of the hippocampus. Thus the ability of a standard 200 Hz conditioning protocol to induce significant NMDA receptor-dependent short- and long-term potentiation was lost at about 3.5 months of age and this deficit persisted for at least another 2-3 months, when plaques start to appear. Consistent with in vitro evidence for a causal role of a selective reduction in NMDA receptor-mediated synaptic currents, the deficit in synaptic plasticity in vivo was associated with a reduction in the synaptic burst response to the conditioning stimulation and was overcome using stronger 400 Hz stimulation. Moreover, intracerebroventricular treatment for 3 days with an N-terminally directed monoclonal anti- human Aß antibody, McSA1, transiently reversed the impairment of synaptic plasticity. Similar brief treatment with the BACE1 inhibitor LY2886721 or the γ-secretase inhibitor MRK-560 was found to have a comparable short-lived ameliorative effect when tracked in individual rats. These findings provide strong evidence that endogenously generated human Aß selectively disrupts the induction of long-term potentiation in a manner that enables potential therapeutic options to be assessed longitudinally at the pre-plaque stage of Alzheimer's disease amyloidosis.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Hipocampo/fisiopatologia , Potenciação de Longa Duração/fisiologia , Transmissão Sináptica/fisiologia , Fatores Etários , Doença de Alzheimer/fisiopatologia , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Peptídeos beta-Amiloides/imunologia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/imunologia , Animais , Anticorpos/farmacologia , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Comportamento Animal/fisiologia , Modelos Animais de Doenças , Compostos Heterocíclicos com 2 Anéis/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Ácidos Picolínicos/farmacologia , Ratos , Ratos Transgênicos , Ratos Wistar , Sulfonamidas/farmacologia , Transmissão Sináptica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...