Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 13: 1060529, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518213

RESUMO

Drought is the most common environmental stress and has had dramatic impacts on soybean (Glycine max L.) growth and yield worldwide. Therefore, to investigate the response mechanism underlying soybean resistance to drought stress, the drought-sensitive cultivar "Liaodou 15" was exposed to 7 (mild drought stress, LD), 17 (moderate drought stress, MD) and 27 (severe drought stress, SD) days of drought stress at the flowering stage followed by rehydration until harvest. A total of 2214, 3684 and 2985 differentially expressed genes (DEGs) in LD/CK1, MD/CK2, and SD/CK3, respectively, were identified by RNA-seq. Weighted gene co-expression network analysis (WGCNA) revealed the drought-response TFs such as WRKY (Glyma.15G021900, Glyma.15G006800), MYB (Glyma.15G190100, Glyma.15G237900), and bZIP (Glyma.15G114800), which may be regulated soybean drought resistance. Second, Glyma.08G176300 (NCED1), Glyma.03G222600 (SDR), Glyma.02G048400 (F3H), Glyma.14G221200 (CAD), Glyma.14G205200 (C4H), Glyma.19G105100 (CHS), Glyma.07G266200 (VTC) and Glyma.15G251500 (GST), which are involved in ABA and flavonoid biosynthesis and ascorbic acid and glutathione metabolism, were identified, suggesting that these metabolic pathways play key roles in the soybean response to drought. Finally, the soybean yield after rehydration was reduced by 50% under severe drought stress. Collectively, our study deepens the understanding of soybean drought resistance mechanisms and provides a theoretical basis for the soybean drought resistance molecular breeding and effectively adjusts water-saving irrigation for soybean under field production.

2.
Front Plant Sci ; 13: 1110910, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36816479

RESUMO

Although foxtail millet, as small Panicoid crop, is of drought resilient, drought stress has a significant effect on panicle of foxtail millet at the yield formation stage. In this study, the changes of panicle morphology, photosynthesis, antioxidant protective enzyme system, reactive oxygen species (ROS) system, and osmotic regulatory substance and RNA-seq of functional leaves under light drought stress (LD), heavy drought stress (HD), light drought control (LDCK) and heavy drought control (HDCK) were studied to get a snap-shot of specific panicle morphological changes, physiological responses and related molecular mechanisms. The results showed that the length and weight of panicle had decreased, but with increased empty abortive rate, and then yield dropped off 14.9% and 36.9%, respectively. The photosynthesis of millet was significantly decreased, like net photosynthesis rate, stomatal conductance and transpiration rate, especially under HD treatment with reluctant recovery from rehydration. Under LD and HD treatment, the peroxidase (POD) was increased by 34% and 14% and the same as H2O2 by 34.7% and 17.2% compared with LDCK and HDCK. The ability to produce and inhibit O2- free radicals under LD treatment was higher than HD. The content of soluble sugar was higher under LD treatment but the proline was higher under HD treatment. Through RNA-seq analysis, there were 2,393 and 3,078 different genes expressed under LD and HD treatment. According to the correlation analysis between weighted gene coexpression network analysis (WGCNA) and physiological traits, the co-expression network of several modules with high correlation was constructed, and some hub genes of millet in response to drought stress were found. The expression changes relating to carbon fixation, sucrose and starch synthesis, lignin synthesis, gibberellin synthesis, and proline synthesis of millet were specifically analyzed. These findings provide a full perspective on how drought affects the yield formation of foxtail millet by constructing one work model thereby providing theoretical foundation for hub genes exploration and drought resistance breeding of foxtail millet.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...