Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Hum Pathol ; 105: 31-36, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32916162

RESUMO

The separation of benign from malignant mesothelial proliferations can be a difficult problem for the surgical pathologist. c-MET is a receptor tyrosine kinase that is overexpressed and detectable by immunohistochemistry in many malignancies, including malignant mesothelioma. Whether c-MET is also expressed in benign mesothelial reactions is unclear from the literature. To determine whether c-MET immunohistochemistry can separate benign from malignant mesothelial processes, we stained 2 tissue microarrays containing 33 reactive epithelioid mesothelial proliferations (E-RMPs), 23 reactive spindle cell mesothelial proliferations, 45 epithelioid malignant mesotheliomas (EMMs), and 26 sarcomatoid/desmoplastic mesotheliomas (SMMs) for c-MET and compared the results with immunohistochemistry for two established markers, BAP1 and methylthioadenosine phosphorylase (MTAP). Membrane staining for c-MET was evaluated using a 12-point H-score classified as negative (score = 0), trace (score = 1-3), moderate (score = 4-6), and strong (score = 8-12). Staining was seen in only 3 of 33 (all trace) E-RMPs compared with 36 of 45 (80%) EMMs (chi-square comparing reactive and malignant = 39.80, p = 1.2 × 10-8). The H-score was >3 (moderate or strong) in 24 of 45 (53%) EMMs. Addition of BAP1 staining to the c-MET-negative/trace EMM increased sensitivity to 75% (32/42), whereas similar addition of MTAP staining increased sensitivity to 77% (33/43). No benign spindle cell proliferations showed staining compared with 10 of 26 (38%) positive SMMs, but only 4 (15%) SMMs were classified as moderate or strong. We conclude that moderate/strong c-MET staining can be used to support a diagnosis of EMM vs an epithelial reactive proliferation. c-MET is too insensitive to use for detecting SMM.


Assuntos
Biomarcadores Tumorais/análise , Proliferação de Células , Epitélio/enzimologia , Imuno-Histoquímica , Mesotelioma Maligno/enzimologia , Proteínas Proto-Oncogênicas c-met/análise , Diagnóstico Diferencial , Epitélio/patologia , Humanos , Mesotelioma Maligno/patologia , Proteínas Associadas aos Microtúbulos/análise , Valor Preditivo dos Testes , Receptor ErbB-3/análise , Análise Serial de Tecidos , Proteínas Supressoras de Tumor/análise , Ubiquitina Tiolesterase/análise
3.
Artigo em Inglês | MEDLINE | ID: mdl-27046544

RESUMO

Neuroanatomy is a challenging subject, with novice medical students often experiencing difficulty grasping the intricate 3D spatial relationships. Most of the anatomical teaching in undergraduate medicine utilizes conventional 2D resources. E-learning technologies facilitate the development of learner-centered educational tools that can be tailored to meet each student's educational needs, and may foster improved learning in neuroanatomy, however this has yet to be examined fully in the literature. An interactive 3D e-learning module was developed to complement gross anatomy laboratory instruction. Incorporating such 3D modules may provide additional support for students in areas of anatomy that are spatially challenging, such as neuroanatomy. Specific anatomical structures and their relative spatial positions to other structures can be clearly defined in the 3D virtual environment from viewpoints that may not readily be available using cadaveric or 2D image modalities. Providing an interactive user interface for the 3D module in which the student controls many factors may enable the student to develop an improved understanding of the spatial relationships. This work outlines the process for the development of a 3D interactive module of the cerebral structures included in the anatomy curriculum for undergraduate medical students in their second year of study.


Assuntos
Instrução por Computador/métodos , Imageamento Tridimensional/métodos , Internet , Neuroanatomia/educação , Treinamento por Simulação/métodos , Software , Encéfalo/anatomia & histologia , Humanos , Ensino , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA