Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 14(19): 4554-4559, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37159549

RESUMO

Defects are of significant importance to determine and improve the distinct properties of 2D materials, such as electronic, optical, and catalytic performance. In this report, we observe four types of point defects in atomically thin flakes of 1T-PtTe2 by using low-temperature scanning tunnelling microscopy and spectroscopy (STM/S). Through the combination of STM imaging and simulations, such defects are identified as a single tellurium vacancy from each side of the top PtTe2 layer and a single platinum vacancy from the topmost and next layer. The density functional theory (DFT) calculations reveal that the platinum vacancies from both the monolayer and bilayer exhibit a local magnetic moment. In bilayer PtTe2, the interlayer coulomb screening effect reduces the local magnetic momentum of the single platinum vacancy. Our research provides meaningful guidance for further experiments about the effects of intrinsic defects on potential functions of thin 1T-PtTe2, such as catalysis and spintronic applications.

2.
J Phys Chem Lett ; 11(4): 1536-1541, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32011142

RESUMO

Hydrogen atoms bonded within molecular cavities often undergo tunneling or thermal-transfer processes that play major roles in diverse physical phenomena. Such transfers may or may not entail intermediate states. The existence of such fleeting states is typically determined by indirect means, while their direct visualization has not been achieved, largely because their concentrations under equilibrium conditions are negligible. Here we use density-functional-theory calculations and scanning-tunneling-microscopy (STM) image simulations to predict that, under specially designed nonequilibrium conditions of voltage-enhanced high transfer rates, the cis-intermediate of the two-hydrogen transfer process in metal-free naphthalocyanine molecules adsorbed on Ag(111) surfaces would be visualizable in a composite image of double-C morphology. As guided by the theoretical predictions, at adjusted scanning temperature and bias, STM experiments achieve a direct visualization of the cis-intermediate. This work demonstrates a practical way to directly visualize elusive intermediates, which enhances understanding of the quantum dynamics of hydrogen atoms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...