Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Adv Mater ; : e2400493, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733358

RESUMO

Full-Stokes polarization detection, with high integration and portability, offers an efficient path toward next-gen multi-information optoelectronic systems. Nevertheless, current techniques relying on optical filters create rigid and bulky configurations, limiting practicality. Here, a flexible, filter-less full-Stokes polarimeter featuring a uniaxial-oriented chiral perovskite film is first reported. It is found that, the strategic manipulation of the surfactant-mediated Marangoni effect during blade coating, is crucial for guiding an equilibrious mass transport to achieve oriented crystallization. Through this approach, the obtained uniaxial-oriented chiral perovskite films inherently possess anisotropy and chirality, and thereby with desired sensitivity to both linearly polarized light and circularly polarized light vectors. The uniaxial-oriented crystalline structure also improves photodetection, achieving a specific detectivity of 5.23 × 1013 Jones, surpassing non-oriented devices by 10×. The as-fabricated flexible polarimeters enable accurate capture of full-Stokes polarization without optical filters, exhibiting slight detection errors for the Stokes parameters: ΔS1 = 9.2%, ΔS2 = 8.6%, and ΔS3 = 6.5%, approaching the detection accuracy of optics-filter polarimeters. This proof of concept also demonstrates applications in matrix polarization imaging.

2.
Hortic Res ; 11(5): uhae077, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38779140

RESUMO

How plants find a way to thrive in alpine habitats remains largely unknown. Here we present a chromosome-level genome assembly for an alpine medicinal herb, Triplostegia glandulifera (Caprifoliaceae), and 13 transcriptomes from other species of Dipsacales. We detected a whole-genome duplication event in T. glandulifera that occurred prior to the diversification of Dipsacales. Preferential gene retention after whole-genome duplication was found to contribute to increasing cold-related genes in T. glandulifera. A series of genes putatively associated with alpine adaptation (e.g. CBFs, ERF-VIIs, and RAD51C) exhibited higher expression levels in T. glandulifera than in its low-elevation relative, Lonicera japonica. Comparative genomic analysis among five pairs of high- vs low-elevation species, including a comparison of T. glandulifera and L. japonica, indicated that the gene families related to disease resistance experienced a significantly convergent contraction in alpine plants compared with their lowland relatives. The reduction in gene repertory size was largely concentrated in clades of genes for pathogen recognition (e.g. CNLs, prRLPs, and XII RLKs), while the clades for signal transduction and development remained nearly unchanged. This finding reflects an energy-saving strategy for survival in hostile alpine areas, where there is a tradeoff with less challenge from pathogens and limited resources for growth. We also identified candidate genes for alpine adaptation (e.g. RAD1, DMC1, and MSH3) that were under convergent positive selection or that exhibited a convergent acceleration in evolutionary rate in the investigated alpine plants. Overall, our study provides novel insights into the high-elevation adaptation strategies of this and other alpine plants.

3.
Sci Data ; 11(1): 407, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649712

RESUMO

Road damage is a great threat to the service life and safety of roads, and the early detection of pavement damage can facilitate maintenance and repair. Street view images serve as a new solution for the monitoring of pavement damage due to their wide coverage and regular updates. In this study, a road pavement damage dataset, the Street View Image Dataset for Automated Road Damage Detection (SVRDD), was developed using 8000 street view images acquired from Baidu Maps. Based on these images, over 20,000 damage instances were visually recognized and annotated. These instances were distributed in five administrative districts of Beijing City. Ten well-established object detection algorithms were trained and assessed using the SVRDD dataset. The results have demonstrated the performances of these algorithms in the detection of pavement damages. To the best of our knowledge, SVRDD is the first public dataset based on street view images for pavement damages detection. It can provide reliable data support for future development of deep learning algorithms based on street view images.

4.
Transl Cancer Res ; 13(2): 651-660, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38482427

RESUMO

Background: Without a pseudocapsule, prostate cancer is invasive in volume growth and has some regularity in spatial distribution. Our study aims to explore the specific origin location, invasive characteristics, and morphology of prostate cancer. Methods: Ninety-eight clinical specimens with tumor volume equal to or less than one-third of the organ volume and 111 autopsy specimens were retrospectively analyzed. The origin location and invasion of prostate cancer in four horizontal quadrants and 11 vertical slides were demonstrated. In addition, the median maximum anteroposterior, left-right, horizontal, and vertical diameters of lesions were compared, and the spatial morphology of lesions was described. Results: There were 335 lesions in the autopsy and clinical specimens. There was no significant difference in the distribution of lesions confined to the horizontal quarter quadrant (P=0.064). The number of lesions with a single positive slide above the apex 0.5-1.4 cm was 75 (49.7%). No significant difference was found when compared with the maximum vertical and horizontal diameters (P=0.421). However, the maximum left-right and horizontal diameters were longer than the maximum anteroposterior diameter (P=0.046 and P<0.001). The number of lesions with a tumor area that decreased from the center to both sides was 85 (46.2%) and decreased from the center to one side was 81 (44.0%). Conclusions: Approximately 50% of the lesions originated from the apex above 0.5-1.4 cm. The invasive tendency of prostate cancer was consistent in the horizontal and vertical dimensions but less so in the anteroposterior direction. About ninety percent of lesions with tumor area decreased from the center to both sides or one side.

5.
Funct Integr Genomics ; 23(4): 345, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-37996761

RESUMO

Neuroinflammation and oxidative stress damage are involved in the pathogenesis of cerebral ischemia-reperfusion injury (CIRI). Ferroptosis emerged as a new player in the regulation of lipid peroxidation processes. This study aimed at exploring the potential involvement of ciprofol on ferroptosis-associated CIRI and subsequent neurological deficits in the mouse model of transient cerebral ischemia and reperfusion. Cerebral ischemia was built in male C57BL/6 J wild-type (WT) and Nrf2-knockout (Nrf2 KO) mice in the manner of middle cerebral artery occlusion (MCAO) followed by reperfusion. Ciprofol improved autonomic behavior, alleviated reactive oxygen species output and ferroptosis-induced neuronal death by nucleus transportation of NFE2 like BZIP transcription factor 2 (Nrf2) and the promotion of heme oxygenase 1 (Ho-1), solute carrier family 7 member 11 (SLC7A11/xCT), and glutathione peroxidase 4 (GPX4). Additionally, ciprofol improved neurological scores and reduced infarct volume, brain water content, and necrotic neurons. Cerebral blood flow in MCAO-treated mice was also improved. Furthermore, absence of Nrf2 abrogated the neuroprotective actions of ciprofol on antioxidant capacity and sensitized neurons to oxidative stress damage. In vitro, the primary-cultured cortical neurons from mice were pre-treated with oxygen-glucose deprivation/reperfusion (OGD/R), followed by ciprofol administration. Ciprofol effectively reversed OGD/R-induced ferroptosis and accelerated transcription of GPX4 and xCT. In conclusion, we investigated the ciprofol-induced inhibition effect of ferroptosis-sheltered neurons from lipid preoxidation in the pathogenesis of CIRI via Nrf2-xCT-GPX4 signaling pathway.


Assuntos
Anestésicos , Isquemia Encefálica , Fármacos Neuroprotetores , Estresse Oxidativo , Traumatismo por Reperfusão , Animais , Masculino , Camundongos , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Anestésicos/farmacologia
6.
Front Cell Neurosci ; 17: 1259360, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37854514

RESUMO

Understanding the developmental changes that affect neurons is a key step in exploring the assembly and maturation of neural circuits in the brain. For decades, researchers have used a number of labeling techniques to visualize neuronal morphology at different stages of development. However, the efficiency and accuracy of neuronal labeling technologies are limited by the complexity and fragility of neonatal brains. In this review, we illustrate the various labeling techniques utilized for examining the neurogenesis and morphological changes occurring during the early stages of development. We compare the advantages and limitations of each technique from different aspects. Then, we highlight the gaps remaining in our understanding of the structure of neurons in the neonatal mouse brain.

7.
Cell Rep ; 42(10): 113246, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37831605

RESUMO

Metastasis is the leading cause of high ovarian-cancer-related mortality worldwide. Three major processes constitute the whole metastatic cascade: invasion, intravasation, and extravasation. Tumor cells often reprogram their metabolism to gain advantages in proliferation and survival. However, whether and how those metabolic alterations contribute to the invasiveness of tumor cells has yet to be fully understood. Here we performed a genome-wide CRISPR-Cas9 screening to identify genes participating in tumor cell dissemination and revealed that PTGES3 acts as an invasion suppressor in ovarian cancer. Mechanistically, PTGES3 binds to phosphofructokinase, liver type (PFKL) and generates a local source of prostaglandin E2 (PGE2) to allosterically inhibit the enzymatic activity of PFKL. Repressed PFKL leads to downgraded glycolysis and the subsequent TCA cycle for glucose metabolism. However, ovarian cancer suppresses the expression of PTGES3 and disrupts the PTGES3-PGE2-PFKL inhibitory axis, leading to hyperactivation of glucose oxidation, eventually facilitating ovarian cancer cell motility and invasiveness.


Assuntos
Dinoprostona , Neoplasias Ovarianas , Humanos , Feminino , Fosfofrutoquinases , Fosfofrutoquinase-1/genética , Fígado/metabolismo , Glucose/metabolismo , Neoplasias Ovarianas/patologia , Proliferação de Células , Linhagem Celular Tumoral , Invasividade Neoplásica
9.
Nat Commun ; 14(1): 4824, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563140

RESUMO

RIG-I-MAVS signaling pathway plays a crucial role in defending against pathogen infection and maintaining immune balance. Upon detecting viral RNA, RIG-I triggers the formation of prion-like aggregates of the adaptor protein MAVS, which then activates the innate antiviral immune response. However, the mechanisms that regulate the aggregation of MAVS are not yet fully understood. Here, we identified WDR77 as a MAVS-associated protein, which negatively regulates MAVS aggregation. WDR77 binds to MAVS proline-rich region through its WD2-WD3-WD4 domain and inhibits the formation of prion-like filament of recombinant MAVS in vitro. In response to virus infection, WDR77 is recruited to MAVS to prevent the formation of its prion-like aggregates and thus downregulate RIG-I-MAVS signaling in cells. WDR77 deficiency significantly potentiates the induction of antiviral genes upon negative-strand RNA virus infections, and myeloid-specific Wdr77-deficient mice are more resistant to RNA virus infection. Our findings reveal that WDR77 acts as a negative regulator of the RIG-I-MAVS signaling pathway by inhibiting the prion-like aggregation of MAVS to prevent harmful inflammation.


Assuntos
Príons , Infecções por Vírus de RNA , Animais , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antivirais , Imunidade Inata , Príons/metabolismo , Transdução de Sinais
11.
Int Immunopharmacol ; 120: 110292, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37182452

RESUMO

BACKGROUND: NLR family pyrin domain-containing 3 (NLRP3)-mediated pyroptosis plays a key role in various acute and chronic inflammatory diseases. Targeted inhibition of NLRP3-mediated pyroptosis may be a potential therapeutic strategy for various inflammatory diseases. Ergolide (ERG) is a sesquiterpene lactone natural product derived from the traditional Chinese medicinal herb, Inula britannica. ERG has been shown to have anti-inflammatory and anti-cancer activities, but the target is remains unknown. HYPOTHESIS/PURPOSE: This study performed an in-depth investigation of the anti-inflammatory mechanism of ERG in NLRP3-mediated pyroptosis and NLPR3 inflammasome related sepsis and acute lung injury model. METHODS: ELISA and Western blot were used to determine the IL-1ß and P20 levels. Co-immunoprecipitation assays were used to detect the interaction between proteins. Drug affinity response target stability (DARTS) assays were used to explore the potential target of ERG. C57BL/6J mice were intraperitoneally injected with E. coli DH5α (2 × 109 CFU/mouse) to establish a sepsis model. Acute lung injury was induced by intratracheal administrationof lipopolysaccharide in wild-type mice and NLRP3 knockout mice with or without ERG treatment. RESULTS: We showed that ERG is an efficient inhibitor of NLRP3-mediated pyroptosis in the first and second signals of NLRP3 inflammasome activation. Furthermore, we demonstrated that ERG irreversibly bound to the NACHT domain of NLRP3 to prevent the assembly and activation of the NLRP3 inflammasome. ERG remarkably improved the survival rate of wild-type septic mice. In lipopolysaccharide-induced acute lung injury model, ERG alleviated acute lung injury of wild-type mice but not NLRP3 knockout mice. CONCLUSION: Our results revealed that the anti-pyroptosis effect of ERG are dependent on NLRP3 and NLRP3 NACHT domain is ERG's direct target. Therefore, ERG can serve as a precursor drug for the development of novel NLRP3 inhibitors to treat NLRP3 inflammasome mediated inflammatory diseases.


Assuntos
Lesão Pulmonar Aguda , Sepse , Sesquiterpenos , Camundongos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Lipopolissacarídeos , Escherichia coli/metabolismo , Camundongos Endogâmicos C57BL , Lactonas , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Sepse/tratamento farmacológico , Camundongos Knockout
13.
Int Immunopharmacol ; 118: 110065, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37004347

RESUMO

BACKGROUND: Acute tubular necrosis (ATN) is a common type of acute renal failure. Recent studies have shown that NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome-mediated pyroptosis in macrophages plays a crucial role in the progression of ATN. Previously, we synthesized an anti-inflammatory compound 15a based on Tanshinone IIA (Tan IIA). In the present study, we found that compound 15a exhibited a greater inhibitory effect on NLRP3-mediated pyroptosis than Tan IIA in vitro. METHODS: C57BL/6 and NLRP3-knockout (NLRP3-KO) mice were intraperitoneally injected with LPS or folic acid (FA) to develop ATN. In vitro, bone marrow-derived macrophages (BMDMs) were treated with LPS for 3 h and then treated with ATP for 0.5 h. RESULTS: We explored the mechanism by which compound 15a inhibited NLRP3 inflammasome in BMDMs as well as its renal protective effect against ATN in mice. We found that compound 15a exhibited a protective effect on mitochondria and reduced the production of mitochondrial reactive oxygen species (mtROS). Moreover, we revealed that compound 15a remarkably reduced the production of mtROS by promoting mitophagy, which resulted in the inhibition of NLRP3 inflammasome to alleviates ATN in mice. CONCLUSION: In summary, compound 15a inhibited NLRP3-mediated inflammation by activating mitophagy in macrophages to alleviate ATN. Our results identified compound 15a as a promising candidate for the treatment of NLRP3-driven ATN.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Camundongos , Animais , Mitofagia , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Macrófagos , Espécies Reativas de Oxigênio , Camundongos Knockout , Inflamação/tratamento farmacológico , Necrose/tratamento farmacológico
14.
Shock ; 59(5): 791-802, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36877222

RESUMO

ABSTRACT: Sepsis-induced cardiomyopathy (SIC) is one of the most common complications of infection-induced sepsis. An imbalance in inflammatory mediators is the main factor leading to SIC . N 6 -methyladenosine (m 6 A) is closely related to the occurrence and development of sepsis. N 6 -methyladenosine reader YTH domain containing 1 (YTHDC1) is an m 6 A N 6 -methyladenosine recognition protein. However, the role of YTHDC1 in SIC remains unclear. Herein, we demonstrated that YTHDC1-shRNA inhibits inflammation, reduces inflammatory mediators, and improves cardiac function in a LPS-induced SIC mouse model. Based on the Gene Expression Omnibus database analysis, serine protease inhibitor A3N is a differential gene of SIC. Furthermore, RNA immunoprecipitation indicated that serine protease inhibitor A3N (SERPINA3N) mRNA can bind to YTHDC1, which regulates the expression of SERPINA3N. Serine protease inhibitor A3N-siRNA reduced LPS-induced inflammation of cardiac myocytes. In conclusion, the m 6 A reader YTHDC1 regulates SERPINA3N mRNA expression to mediate the levels of inflammation in SIC. Such findings add to the relationship between m 6 A reader YTHDC1 and SIC, providing a new research avenue for the therapeutic mechanism of SIC.


Assuntos
Cardiomiopatias , Sepse , Serpinas , Animais , Camundongos , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Inibidores de Serina Proteinase , Lipopolissacarídeos/toxicidade , RNA Mensageiro/metabolismo , Sepse/complicações , Sepse/genética , Cardiomiopatias/genética , Inflamação , Mediadores da Inflamação , Proteínas de Fase Aguda , Serpinas/genética , Serpinas/metabolismo
15.
Small ; 19(24): e2208012, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36899451

RESUMO

Acetamide- or formamide-assisted in situ strategy is designed to synthesize carbon atom self-doped g-C3 N4 (AHCNx ) or nitrogen vacancy-modified g-C3 N4 (FHCNx ). Different from the direct copolymerization route that suffers from the problem of mismatched physical properties of acetamide (or formamide) with urea, the synthesis of AHCNx (or FHCNx ) starts from a crucial preorganization step of acetamide (or formamide) with urea via freeze drying-hydrothermal treatment so that the chemical structures as well as C-doping level in AHCNx and N-vacancy concentration in FHCNx can be precisely regulated. By using various structural characterization methods, well-defined AHCNx and FHCNx structures are proposed. At the optimal C-doping level in AHCNx or N-vacancy concentration in FHCNx , both AHCNx and FHCNx exhibit remarkably improved visible-light photocatalytic performance in oxidation of emerging organic pollutants (acetaminophen and methylparaben) and reduction of proton to H2 in comparison of unmodified g-C3 N4 . Combination of the experimental results with theoretical calculations, it is confirmed that AHCNx and FHCNx show different charge separation and transfer mechanisms, while the enhanced visible-light harvesting capacity and the localized charge distributions on HOMO and LUMO are responsible for this excellent photocatalytic redox performance of AHCNx and FHCNx .

16.
Nanoscale ; 15(3): 1365-1372, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36562307

RESUMO

Two-dimensional (2D) nodal-loop semimetal (NLSM) materials have attracted much attention for their high-speed and low-consumption transporting properties as well as their fantastic symmetry protection mechanisms. In this paper, using systematic first-principles calculations, we present an excellent NLSM candidate, a 2D AlSb monolayer, in which the conduction and valence bands cross with each other forming fascinating multiple nodal-loop (NL) states. The NLSM properties of the AlSb monolayer are protected by its glide mirror symmetry, which was confirmed using a symmetry-constrained six-band tight-binding model. The transport properties of the AlSb monolayer under in-plane uniaxial strains are also studied, based on a non-equilibrium Green's function method. It is found that both compressive and tensile strains from -10% to 10% improve the transporting properties of AlSb, and it is interesting to see that flexure configurations are energetically favored when compressive uniaxial strains are applied. Our studies not only provide a novel 2D NLSM candidate with a new symmetry protection mechanism, but also raise the novel possibility for the detection of out-of-plane flexure in 2D semimetal materials.

17.
Bioengineered ; 13(6): 14815-14826, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36274249

RESUMO

A qualitative and quantitative analysis of metabolites was performed by metabolomics comparation on the pericarps of four varieties of Zanthoxylum bungeanum Maxim. The Zanthoxylum bunganum as scion combined with three rootstock varieties of Zanthoxylum piasezkii Maxim (YJ), July Zanthoxylum bunganum Maxim (QJ), and August Zanthoxylum bunganum Maxim (BJ), at the same time Zanthoxylum bungeanum seedlings breeding were compared as control (MJ). A total of 1429 metabolites were identified in Zanthoxylum bungeanum Maxim pericarps based on chromatography and mass spectrometry dual detection platform. While the metabolites between four varieties of Z. bungeanum varied, there was identified 31, 15, 7, 79, 42, 19 down-regulated and 55, 50, 13, 75, 43, 27 up-regulated differential metabolites between MJ and BJ, MJ and QJ, MJ and YJ, QJ and BJ, YJ and BJ, YJ and QJ. Meanwhile, the differential metabolites composition was distinct among various varieties of Z. bungeanum and dominant by phenolic compounds flavonoid and phenolic acids, especially highest in varieties July Zanthoxylum bunganum Maxim. Highlight A comparative metabolomics analyzed in four varieties of Zanthoxylum bungeanum pericarp.Total 1429 metabolites were identified and mainly in flavonoid and phenolic acid.July and August Zanthoxylum bunganum Maxim has highest antioxidant capacity.The rootstock July Zanthoxylum bunganum Maxim was recommended in Loess Plateau.


Assuntos
Zanthoxylum , Zanthoxylum/química , Antioxidantes , Flavonoides , Fenóis , Metabolômica
18.
Phys Chem Chem Phys ; 24(36): 21631-21637, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36047444

RESUMO

Interfaces between materials are ubiquitous in materials science, especially in devices. As device dimensions continue to be reduced, understanding the physical characteristics that appear at interfaces is crucial to exploit them for applications, spintronics in this case. Here, based on first-principles calculations, we propose a general and tunable platform to realize an exotic quantum anomalous Hall effect (QAHE) with the germanene monolayer by proximity coupling to a semiconducting ferromagnetic NiI2 (Ge/NiI2). Through analysis of the Berry curvature and band structure with spin-orbit coupling, the QAHE phase with an integer Chern number (C = -1), which is induced by band inversion between Ge-p orbitals, can achieve complete spin polarization for low-dissipation electronic devices. Also, the proximity coupling between germanene and the NiI2 substrate makes the non-trivial bandgap reach up to 85 meV, and the Curie temperature of the Ge/NiI2 heterostructure (HTS) is enhanced to 238 K, which is much higher than that of pristine NiI2. An effective k·p model is proposed to clarify the quantum phenomena in the Ge/NiI2 HTS. These findings shed light on the possible role of magnetic proximity effects on condensed matter physics in germanene and open new perspectives for multifunctional spin quantum devices in spintronics.

19.
J Lipid Res ; 63(10): 100273, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36084713

RESUMO

Liposomes are the most widely used nanocarrier platform for the delivery of therapeutic and diagnostic agents, and a number of liposomes have been approved for use in clinical practice. After systemic administration, most liposomes are cleared by macrophages in the mononuclear phagocyte system, such as the liver and bone marrow (BM). However, the majority of studies have focused on investigating the therapeutic results of liposomal drugs, and too few studies have evaluated the potential side effects of empty nanocarriers on the functions of macrophages in the mononuclear phagocyte system. Here, we evaluate the potential effects of empty liposomes on the functions of BM niche macrophages. Following liposome administration, we observed lipid droplet (LD) accumulation in cultured primary macrophages and BM niche macrophages. We found that these LD-accumulating macrophages, similar to foam cells, exhibited increased expression of inflammatory cytokines, such as IL-1ß and IL-6. We further provided evidence that liposome deposition and degradation induced LD biogenesis on the endoplasmic reticulum membrane and subsequently disturbed endoplasmic reticulum homeostasis and activated the inositol-requiring transmembrane kinase/endoribonuclease 1α/NF-κB signaling pathway, which is responsible for the inflammatory activation of macrophages after liposome engulfment. Finally, we also showed the side effects of dysfunctional BM niche macrophages on hematopoiesis in mice, such as the promotion of myeloid-biased output and impairment of erythropoiesis. This study not only draws attention to the safety of liposomal drugs in clinical practice but also provides new directions for the design of lipid-based drug carriers in preclinical studies.


Assuntos
Medula Óssea , Lipossomos , Camundongos , Animais , Lipossomos/metabolismo , NF-kappa B/metabolismo , Interleucina-6/metabolismo , Macrófagos/metabolismo , Hematopoese , Portadores de Fármacos/metabolismo , Portadores de Fármacos/farmacologia , Citocinas/metabolismo , Endorribonucleases , Inositol/metabolismo , Lipídeos
20.
Proc Natl Acad Sci U S A ; 119(40): e2202536119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161898

RESUMO

Through synaptic connections, long-range circuits transmit information among neurons and connect different brain regions to form functional motifs and execute specific functions. Tracing the synaptic distribution of specific neurons requires submicron-level resolution information. However, it is a great challenge to map the synaptic terminals completely because these fine structures span multiple regions, even in the whole brain. Here, we develop a pipeline including viral tracing, sample embedding, fluorescent micro-optical sectional tomography, and big data processing. We mapped the whole-brain distribution and architecture of long projections of the parvalbumin neurons in the basal forebrain at the synaptic level. These neurons send massive projections to multiple downstream regions with subregional preference. With three-dimensional reconstruction in the targeted areas, we found that synaptic degeneration was inconsistent with the accumulation of amyloid-ß plaques but was preferred in memory-related circuits, such as hippocampal formation and thalamus, but not in most hypothalamic nuclei in 8-month-old mice with five familial Alzheimer's disease mutations. Our pipeline provides a platform for generating a whole-brain atlas of cell-type-specific synaptic terminals in the physiological and pathological brain, which can provide an important resource for the study of the organizational logic of specific neural circuits and the circuitry changes in pathological conditions.


Assuntos
Doença de Alzheimer , Prosencéfalo Basal , Neurônios , Sinapses , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Prosencéfalo Basal/ultraestrutura , Modelos Animais de Doenças , Camundongos , Mutação , Neuroimagem , Neurônios/ultraestrutura , Parvalbuminas/análise , Sinapses/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...