Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 13(12)2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-38136552

RESUMO

WRKY transcription factors are one of the largest families of transcription regulators that play essential roles in regulating the synthesis of secondary metabolites in plants. Jasmine (Jasminum sambac), renowned for its aromatic nature and fragrant blossoms, possesses a significant abundance of volatile terpene compounds. However, the role of the WRKY family in terpene synthesis in jasmine remains undetermined. In this study, 72 WRKY family genes of J. sambac were identified with their conserved WRKY domains and were categorized into three main groups based on their structural and phylogenetic characteristics. The extensive segmental duplications contributed to the expansion of the WRKY gene family. Expression profiles derived from the transcriptome data and qRT-PCR analysis showed that the majority of JsWRKY genes were significantly upregulated in fully bloomed flowers compared to buds. Furthermore, multiple correlation analyses revealed that the expression patterns of JsWRKYs (JsWRKY27/33/45/51/55/57) were correlated with both distinct terpene compounds (monoterpenes and sesquiterpenes). Notably, the majority of jasmine terpene synthase (JsTPS) genes related to terpene synthesis and containing W-box elements exhibited a significant correlation with JsWRKYs, particularly with JsWRKY51, displaying a strong positive correlation. A subcellular localization analysis showed that JsWRKY51 was localized in the nucleus. Moreover, transgenic tobacco leaves and jasmine calli experiments demonstrated that overexpression of JsWRKY51 was a key factor in enhancing the accumulation of ß-ocimene, which is an important aromatic terpene component. Collectively, our findings suggest the roles of JsWRKY51 and other JsWRKYs in regulating the synthesis of aromatic compounds in J. sambac, providing a foundation for the potential utilization of JsWRKYs to facilitate the breeding of fragrant plant varieties with an improved aroma.


Assuntos
Jasminum , Perfumes , Jasminum/química , Jasminum/genética , Jasminum/metabolismo , Odorantes/análise , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Filogenia , Melhoramento Vegetal , Terpenos/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Int J Mol Sci ; 24(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37569658

RESUMO

Nuclear factor Y (NF-Y) transcription factors play an essential role in regulating plant growth, development, and stress responses. Despite extensive research on the NF-Y gene family across various species, the knowledge regarding the NF-Y family in Ginkgo biloba remains unknown. In this study, we identified a total of 25 NF-Y genes (seven GbNF-YAs, 12 GbNF-YBs, and six GbNF-YCs) in the G. biloba genome. We characterized the gene structure, conserved motifs, multiple sequence alignments, and phylogenetic relationships with other species (Populus and Arabidopsis). Additionally, we conducted a synteny analysis, which revealed the occurrence of segment duplicated NF-YAs and NF-YBs. The promoters of GbNF-Y genes contained cis-acting elements related to stress response, and miRNA-mRNA analysis showed that some GbNF-YAs with stress-related cis-elements could be targeted by the conserved miRNA169. The expression of GbNF-YA genes responded to drought, salt, and heat treatments, with GbNF-YA6 showing significant upregulation under heat and drought stress. Subcellular localization indicated that GbNF-YA6 was located in both the nucleus and the membrane. Overexpressing GbNF-YA6 in ginkgo callus significantly induced the expression of heat-shock factors (GbHSFs), and overexpressing GbNF-YA6 in transgenic Arabidopsis enhanced its heat tolerance. Additionally, Y2H assays demonstrated that GbNF-YA6 could interact with GbHSP at the protein level. Overall, our findings offer novel insights into the role of GbNF-YA in enhancing abiotic stress tolerance and warrant further functional research of GbNF-Y genes.

3.
Biomolecules ; 14(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38254645

RESUMO

Long non-coding RNAs (lncRNAs) have emerged as curial regulators of diverse biological processes in plants. Jasmine (Jasminum sambac) is a world-renowned ornamental plant for its attractive and exceptional flower fragrance. However, to date, no systematic screening of lncRNAs and their regulatory roles in the production of the floral fragrance of jasmine flowers has been reported. In this study, we identified a total of 31,079 novel lncRNAs based on an analysis of strand-specific RNA-Seq data from J. sambac flowers at different stages. The lncRNAs identified in jasmine flowers exhibited distinct characteristics compared with protein-coding genes (PCGs), including lower expression levels, shorter transcript lengths, and fewer exons. Certain jasmine lncRNAs possess detectable sequence conservation with other species. Expression analysis identified 2752 differentially expressed lncRNAs (DE_lncRNAs) and 8002 DE_PCGs in flowers at the full-blooming stage. DE_lncRNAs could potentially cis- and trans-regulate PCGs, among which DE_lincRNAs and their targets showed significant opposite expression patterns. The flowers at the full-blooming stage are specifically enriched with abundant phenylpropanoids and terpenoids potentially contributed by DE_lncRNA cis-regulated PCGs. Notably, we found that many cis-regulated DE_lncRNAs may be involved in terpenoid and phenylpropanoid/benzenoid biosynthesis pathways, which potentially contribute to the production of jasmine floral scents. Our study reports numerous jasmine lncRNAs and identifies floral-scent-biosynthesis-related lncRNAs, which highlights their potential functions in regulating the floral scent formation of jasmine and lays the foundations for future molecular breeding.


Assuntos
Jasminum , Perfumes , RNA Longo não Codificante , Jasminum/genética , Odorantes , RNA Longo não Codificante/genética , Éxons , Flores/genética , Terpenos
4.
BMC Plant Biol ; 20(1): 86, 2020 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-32087683

RESUMO

BACKGROUND: Elevated temperature as a result of global climate warming, either in form of sudden heatwave (heat shock) or prolonged warming, has profound effects on the growth and development of plants. However, how plants differentially respond to these two forms of elevated temperatures is largely unknown. Here we have therefore performed a comprehensive comparison of multi-level responses of Arabidopsis leaves to heat shock and prolonged warming. RESULTS: The plant responded to prolonged warming through decreased stomatal conductance, and to heat shock by increased transpiration. In carbon metabolism, the glycolysis pathway was enhanced while the tricarboxylic acid (TCA) cycle was inhibited under prolonged warming, and heat shock significantly limited the conversion of pyruvate into acetyl coenzyme A. The cellular concentration of hydrogen peroxide (H2O2) and the activities of antioxidant enzymes were increased under both conditions but exhibited a higher induction under heat shock. Interestingly, the transcription factors, class A1 heat shock factors (HSFA1s) and dehydration responsive element-binding proteins (DREBs), were up-regulated under heat shock, whereas with prolonged warming, other abiotic stress response pathways, especially basic leucine zipper factors (bZIPs) were up-regulated instead. CONCLUSIONS: Our findings reveal that Arabidopsis exhibits different response patterns under heat shock versus prolonged warming, and plants employ distinctly different response strategies to combat these two types of thermal stress.


Assuntos
Arabidopsis/fisiologia , Resposta ao Choque Térmico , Temperatura Alta/efeitos adversos , Metaboloma , Transcriptoma , Arabidopsis/genética , Folhas de Planta/genética , Folhas de Planta/fisiologia , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...