Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Nanotechnol ; 19(5): 588-603, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38172431

RESUMO

Owing to their excellent discharged energy density over a broad temperature range, polymer nanocomposites offer immense potential as dielectric materials in advanced electrical and electronic systems, such as intelligent electric vehicles, smart grids and renewable energy generation. In recent years, various nanoscale approaches have been developed to induce appreciable enhancement in discharged energy density. In this Review, we discuss the state-of-the-art polymer nanocomposites with improved energy density from three key aspects: dipole activity, breakdown resistance and heat tolerance. We also describe the physical properties of polymer nanocomposite interfaces, showing how the electrical, mechanical and thermal characteristics impact energy storage performances and how they are interrelated. Further, we discuss multi-level nanotechnologies including monomer design, crosslinking, polymer blending, nanofiller incorporation and multilayer fabrication. We conclude by presenting the current challenges and future opportunities in this field.

2.
Life Sci Space Res (Amst) ; 38: 87-100, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37481313

RESUMO

The response of plants to radiation is an essential topic in both space plant cultivation and mutation breeding by radiation. In this study, heavy ion beams (HIB) generated by the ground accelerator and X-rays (XR) were used as models of high linear energy transfer (LET) and low LET radiation to study the molecular response mechanism of Platycodon grandiflorus (P. grandiflorus) seedlings after irradiation. The gene and protein expression profiles of P. grandiflorus after 15 Gy HIB and 20 Gy XR radiation were analyzed by transcriptome and proteome. The results showed that the number of differentially expressed genes (DEGs) induced by HIB radiation was less than that of XR group, but HIB radiation induced more differentially expressed proteins (DEPs). Both HIB and XR radiation activated genes of RNA silencing, double-strand break repair and cell catabolic process. DNA replication and cell cycle related genes were down-regulated. The genes of cell wall and external encapsulating structure were up-regulated after HIB radiation. The gene expression of protein folding and glucan biosynthesis increased after XR radiation. Protein enrichment analysis indicated that HIB radiation resulted in differential protein enriched in photosynthesis and secondary metabolite biosynthesis pathways, while XR radiation induced differential protein of glyoxylate and dicarboxylate metabolism and carbon metabolism. After HIB and XR radiation, the genes of antioxidant system and terpenoid and polyketide metabolic pathways presented different expression patterns. HIB radiation led to the enrichment of non-homologous end-joining pathway. The results will contribute to understanding the biological effects of plants under space radiation.


Assuntos
Íons Pesados , Platycodon , Raios X , Antioxidantes , Carbono
3.
Front Plant Sci ; 14: 1213807, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37416884

RESUMO

Heavy ion beam (HIB) is an effective physical mutagen that has been widely used in plant mutational breeding. Systemic knowledge of the effects caused by different HIB doses at developmental and genomic levels will facilitate efficient breeding for crops. Here we examined the effects of HIB systematically. Kitaake rice seeds were irradiated by ten doses of carbon ion beams (CIB, 25 - 300 Gy), which is the most widely used HIB. We initially examined the growth, development and photosynthetic parameters of the M1 population and found that doses exceeding 125 Gy caused significant physiological damages to rice. Subsequently, we analyzed the genomic variations in 179 M2 individuals from six treatments (25 - 150 Gy) via whole-genome sequencing (WGS). The mutation rate peaks at 100 Gy (2.66×10-7/bp). Importantly, we found that mutations shared among different panicles of the same M1 individual are at low ratios, validating the hypothesis that different panicles may be derived from different progenitor cells. Furthermore, we isolated 129 mutants with distinct phenotypic variations, including changes in agronomic traits, from 11,720 M2 plants, accounting for a 1.1% mutation rate. Among them, about 50% possess stable inheritance in M3. WGS data of 11 stable M4 mutants, including three lines with higher yields, reveal their genomic mutational profiles and candidate genes. Our results demonstrate that HIB is an effective tool that facilitates breeding, that the optimal dose range for rice is 67 - 90% median lethal dose (LD50), and that the mutants isolated here can be further used for functional genomic research, genetic analysis, and breeding.

4.
Int J Mol Sci ; 24(10)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37240171

RESUMO

Soybean (Glycine max (L.) Merr.) is a nutritious crop that can provide both oil and protein. A variety of mutagenesis methods have been proposed to obtain better soybean germplasm resources. Among the different types of physical mutagens, carbon-ion beams are considered to be highly efficient with high linear energy transfer (LET), and gamma rays have also been widely used for mutation breeding. However, systematic knowledge of the mutagenic effects of these two mutagens during development and on phenotypic and genomic mutations has not yet been elucidated in soybean. To this end, dry seeds of Williams 82 soybean were irradiated with a carbon-ion beam and gamma rays. The biological effects of the M1 generation included changes in survival rate, yield and fertility. Compared with gamma rays, the relative biological effectiveness (RBE) of the carbon-ion beams was between 2.5 and 3.0. Furthermore, the optimal dose for soybean was determined to be 101 Gy to 115 Gy when using the carbon-ion beam, and it was 263 Gy to 343 Gy when using gamma rays. A total of 325 screened mutant families were detected from out of 2000 M2 families using the carbon-ion beam, and 336 screened mutant families were found using gamma rays. Regarding the screened phenotypic M2 mutations, the proportion of low-frequency phenotypic mutations was 23.4% when using a carbon ion beam, and the proportion was 9.8% when using gamma rays. Low-frequency phenotypic mutations were easily obtained with the carbon-ion beam. After screening the mutations from the M2 generation, their stability was verified, and the genome mutation spectrum of M3 was systemically profiled. A variety of mutations, including single-base substitutions (SBSs), insertion-deletion mutations (INDELs), multinucleotide variants (MNVs) and structural variants (SVs) were detected with both carbon-ion beam irradiation and gamma-ray irradiation. Overall, 1988 homozygous mutations and 9695 homozygous + heterozygous genotype mutations were detected when using the carbon-ion beam. Additionally, 5279 homozygous mutations and 14,243 homozygous + heterozygous genotype mutations were detected when using gamma rays. The carbon-ion beam, which resulted in low levels of background mutations, has the potential to alleviate the problems caused by linkage drag in soybean mutation breeding. Regarding the genomic mutations, when using the carbon-ion beam, the proportion of homozygous-genotype SVs was 0.45%, and that of homozygous + heterozygous-genotype SVs was 6.27%; meanwhile, the proportions were 0.04% and 4.04% when using gamma rays. A higher proportion of SVs were detected when using the carbon ion beam. The gene effects of missense mutations were greater under carbon-ion beam irradiation, and the gene effects of nonsense mutations were greater under gamma-ray irradiation, which meant that the changes in the amino acid sequences were different between the carbon-ion beam and gamma rays. Taken together, our results demonstrate that both carbon-ion beam and gamma rays are effective techniques for rapid mutation breeding in soybean. If one would like to obtain mutations with a low-frequency phenotype, low levels of background genomic mutations and mutations with a higher proportion of SVs, carbon-ion beams are the best choice.


Assuntos
Glycine max , Mutagênicos , Glycine max/genética , Mutação , Raios gama , Íons , Fenótipo , Carbono , Genômica
5.
Adv Mater ; 35(35): e2302392, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37196180

RESUMO

Polymer dielectrics possess significant advantages in electrostatic energy storage applications, such as high breakdown strength (Eb ) and efficiency (η), while their discharged energy density (Ud ) at high temperature is limited by the decrease in Eb and η. Several strategies including introducing inorganic components and crosslinking have been investigated to improve the Ud of polymer dielectrics, but new issues will be encountered, e.g., the sacrifice of flexibility, the degradation of the interfacial insulating property and the complex preparation process. In this work, 3D rigid aromatic molecules are introduced into aromatic polyimides to form physical crosslinking networks through electrostatic interactions between their oppositely charged phenyl groups. The dense physical crosslinking networks strengthen the polyimides to boost the Eb , and the aromatic molecules trap the charge carriers to suppress the loss, allowing the strategy to combine the advantages of inorganic incorporation and crosslinking. This study demonstrates that this strategy is well applicable to a number of representative aromatic polyimides, and ultrahigh Ud of 8.05 J cm-3 (150 °C) and 5.12 J cm-3 (200 °C) is achieved. Furthermore, the all-organic composites exhibit stable performances during ultralong 105 charge-discharge cycles in harsh environments (500 MV m-1 and 200 °C) and prospects for large-scale preparation.

6.
Adv Mater ; 35(16): e2209958, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36693075

RESUMO

High-dielectric-constant polymer composites have broad application prospects in flexible electronics and electrostatic energy storage capacitors. Substantial enhancement in dielectric constants (εr ) of polymer composites so far can only be obtained at a high loading of nanofillers, resulting in high dielectric loss and high elastic modulus of polymer composites. Addressing the polarization shielding and the consequent polarization discontinuity at polymer/filler interfaces has been a long-standing challenge to achieve flexible polymer composite with high εr . Herein, a polymer composite with interconnected BaTiO3 (BT) ceramic scaffold is proposed and demonstrated, which exhibits a high εr of ≈210 at a low BT volume fraction of ≈18 vol%, approaching the upper limit predicted by the parallel model. By incorporating relaxor Ba(Zrx Ti1-x )O3 phase in BT scaffold, dielectric temperature stability is further achieved with Δεr below ±10% within a broad temperature range (25-140 °C). Moreover, the dielectric performances remain stable under a compressive strain of up to 80%. This work provides a facile approach to construct large-scale polymer composites with robust dielectric performance against changes in thermal and mechanical conditions, which are promising for high-temperature applications in flexible electronics.

7.
Angew Chem Int Ed Engl ; 62(5): e202214571, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36394191

RESUMO

Sub-nanowires (SNWs) exhibit great potential applications in nanocomposites owing to their high specific surface area, high flexibility, and similarity to polymer chains in dimension, which are a good entry point to bridge inorganic materials and polymer materials. Herein, we synthesized hydroxyapatite sub-nanowires (HAP SNWs) and engineered hydroxyapatite sub-nanowires/polyimide (HSP) gels and films by simple mixing of HAP SNWs and polyimide (PI). Benefiting from the interactions between HAP SNWs and PI, these nanocomposites were a continuous hybrid network. As the increase of HAP SNWs contents, the viscosity and modulus of HSP gels were greatly improved by one or two orders of magnitude compared with PI gel. HSP films not only maintained high transparency but also gained high haze, as well as exhibited enhanced Young's modulus. Thus, both HSP gels and films developed in this work are promising for various applications in coatings and high-performance films.

8.
Adv Mater ; 34(47): e2207421, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36210753

RESUMO

The miniaturization of electronic devices and power systems for capacitive energy storage under harsh environments requires scalable high-quality ultrathin high-temperature dielectric films. To meet the need, ultrasonic spray-coating (USC) can be used. Novel polyimides with a dipolar group, CF3 (F-PI), and all-organic composites with trace organic semiconductor can serve as models. These scalable high-quality ultrathin films (≈2.6 and ≈5.2 µm) are successfully fabricated via USC. The high quality of the films is evaluated from the micro-millimeter scale to the sub-millimeter and above. The high glass transition temperature Tg (≈340 °C) and concurrent large bandgap Eg (≈3.53 eV) induced by weak conjugation from considerable interchain distance (≈6.2 Å) enable F-PI to be an excellent matrix delivering a discharge energy density with 90% discharge efficiency Uη90 of 2.85 J cm-3 at 200 °C. Further, the incorporation of a trace organic semiconductor leads to a record Uη90 of ≈4.39 J cm-3 at 200 °C due to the markedly enhanced breakdown strength caused by deep charge traps of ≈2 eV. Also, a USC-fabricated multilayer F-PI foil capacitor with ≈85 nF (six layers) has good performance at 150 °C. These results confirm that USC is an excellent technology to fabricate high-quality ultrathin dielectric films and capacitors.

9.
Small ; 18(50): e2205247, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36266932

RESUMO

Polymer dielectrics are key components for electrostatic capacitors in energy, transportation, military, and aerospace fields, where their operation temperature can be boosted beyond 125 °C. While most polymers bear poor thermal stability and severe dielectric loss at elevated temperatures, numerous linear polymers with linear D-E loops and low dielectric permittivity exhibit low loss and high thermal stability. Therefore, the broad prospect of electrostatic capacitors under extreme conditions is anticipated for linear polymers, along with intensive efforts to enhance their energy density with high efficiency in recent years. In this article, an overview of recent progress in linear polymers and their composites for high-energy-density electrostatic capacitors at elevated temperatures is presented. Three key factors determining energy storage performance, including polarization, breakdown strength, and thermal stability, and their couplings are discussed. Strategies including chain modulation, filler selection, and design of topological structure are summarized. Key parameters for electrical and thermal evaluations of polymer dielectrics are also introduced. At the end of this review, research challenges and future opportunities for better performance and industrialization of dielectrics based on linear polymers are concluded.

10.
BMC Plant Biol ; 21(1): 510, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34732128

RESUMO

BACKGROUND: Flower longevity is closely related to pollen dispersal and reproductive success in all plants, as well as the commercial value of ornamental plants. Mutants that display variation in flower longevity are useful tools for understanding the mechanisms underlying this trait. Heavy-ion beam irradiation has great potential to improve flower shapes and colors; however, few studies are available on the mutation of flower senescence in leguminous plants. RESULTS: A mutant (C416) exhibiting blossom duration eight times longer than that of the wild type (WT) was isolated in Lotus japonicus derived from carbon ion beam irradiation. Genetic assays supported that the delayed flower senescence of C416 was a dominant trait controlled by a single gene, which was located between 4,616,611 Mb and 5,331,876 Mb on chromosome III. By using a sorting strategy of multi-sample parallel genome sequencing, candidate genes were narrowed to the gene CUFF.40834, which exhibited high identity to ethylene receptor 1 in other model plants. A physiological assay demonstrated that C416 was insensitive to ethylene precursor. Furthermore, the dynamic changes of phytohormone regulatory network in petals at different developmental stages was compared by using RNA-seq. In brief, the ethylene, jasmonic acid (JA), and salicylic acid (SA) signaling pathways were negatively regulated in C416, whereas the brassinosteroid (BR) and cytokinin signaling pathways were positively regulated, and auxin exhibited dual effects on flower senescence in Lotus japonicus. The abscisic acid (ABA) signaling pathway is positively regulated in C416. CONCLUSION: So far, C416 might be the first reported mutant carrying a mutation in an endogenous ethylene-related gene in Lotus japonicus, rather than through the introduction of exogenous genes by transgenic techniques. A schematic of the flower senescence of Lotus japonicus from the perspective of the phytohormone regulatory network was provided based on transcriptome profiling of petals at different developmental stages. This study is informative for elucidating the molecular mechanism of delayed flower senescence in C416, and lays a foundation for candidate flower senescence gene identification in Lotus japonicus. It also provides another perspective for the improvement of flower longevity in legume plants by heavy-ion beam.


Assuntos
Carbono/metabolismo , Lotus/metabolismo , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Lotus/genética , Reguladores de Crescimento de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Transcriptoma/genética , Sequenciamento Completo do Genoma/métodos
11.
Orthop Surg ; 13(3): 847-854, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33749146

RESUMO

OBJECTIVE: To describe a surgical technique using suture tape for reconstruction of the medial patellofemoral ligament (MPFL). This technique restores the stability of the reconstructed ligament and has excellent postoperative outcomes. METHOD: This is a retrospective analysis. From January 2016 to June 2018, 17 patients underwent MPFL reconstruction using high-strength suture (FiberTape; Arthrex) augmentation, with at least 12 months of follow up. There were 11 female and 6 male patients. The mean age at the time of MPFL reconstruction was 22.1 years (range 13-34 years). Clinical outcomes included pain level, knee range of motion, passive patellar hypermobility, and maltracking at follow-up. The lateral patellofemoral angles, congruence angles, and patellar tilt angles were measured in a skyline view by CT at 30° of knee flexion at 12 months. Functional outcomes were assessed using the Lysholm knee scoring scale, the SF-12 score, the Tegner score, and the Crosby and Insall grading system at yearly follow-up. RESULT: No patients were lost at the last follow up. One patient had recurrence of patellar dislocation and none of the others had serious complications. The success rate of MPFL repair for preventing recurrent dislocations was 94.1% (16 of 17 knees). Fifteen knees had full range of motion of more than 130°. At follow-up, 2 knees were judged to have mild hypermobility and none had severe hypermobility or maltracking. Using the Crosby and Insall grading system, 12 knees (70.6%) were graded as excellent, 4 knees (23.5%) as good, 1 knee (5.9%) as fair to poor, and none as worse at the last follow-up assessment. In all patients, the Lysholm knee score (55.12 ± 13.52 vs 79.88 ± 7.50, P < 0.01), the SF-12 score (47 ± 9.53 vs 65.24 ± 12.82, P < 0.01), and the Tegner score (2.76 ± 1.39 vs 6.53 ± 1.70, P < 0.01) had improved at their 12-month follow up. Compared with preoperative radiological findings, there was a significant improvement in lateral patellofemoral angle (-10.24 ± 7.10 vs 6 ± 5.43, P < 0.01), patellar tilt angle (26.53 ± 7.23 vs 9.88 ± 4.24, P < 0.01), and congruence angle (29.59 ± 11.95 vs -8.65 ± 4.86, P < 0.01). CONCLUSION: The use of FiberTape in MPFL reconstruction can improve the stability of the knee following surgery and has good midterm clinical results and low complication rates.


Assuntos
Instabilidade Articular/cirurgia , Ligamentos Articulares/lesões , Ligamentos Articulares/cirurgia , Articulação Patelofemoral/lesões , Articulação Patelofemoral/cirurgia , Técnicas de Sutura/instrumentação , Adolescente , Adulto , Feminino , Humanos , Masculino , Medição da Dor , Amplitude de Movimento Articular , Estudos Retrospectivos , Adulto Jovem
12.
Sci Bull (Beijing) ; 66(11): 1080-1090, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36654342

RESUMO

Large roughness and structure disorder in ferroelectric ultrathin Langmuir-Blodgett (LB) film results in severe space scatter in electrical, ferroelectric and piezoelectric characteristics, thus limiting the nanoscale research and reliability of nano-devices. However, no effective method aiming at large-area uniform organic ferroelectric LB film has ever been reported to date. Herein, we present a facile hot-pressing strategy to prepare relatively large-area poly(vinylidene fluoride) (PVDF) LB film with ultra-smooth surface root mean square (RMS) roughness is 0.3 nm in a 30 µm × 30 µm area comparable to that of metal substrate, which maximized the potential of LB technique to control thickness distribution. More importantly, compared with traditionally annealed LB film, the hot-pressed LB film manifests significantly improved structure uniformity, less fluctuation in ferroelectric characteristics and higher dielectric and piezoelectric responses, owing to the uniform dipole orientation and higher crystalline quality. Besides, different surface charge relaxation behaviors are investigated and the underlying mechanisms are explained in the light of the interplay of surface charge and polarization charge in the case of nanoscale non-uniform switching. We believe that our work not only presents a novel strategy to endow PVDF LB film with unprecedented reliability and improved performance as a competitive candidate for future ferroelectric tunnel junctions (FTJs) and nano electro mechanical systems (NEMS), but also reveals an attracting coupling effect between the surface potential distribution and nanoscale non-uniform switching behavior, which is crucial for the understanding of local transport characterization modulated by band structure, bit signal stability for data-storage application and the related surface charge research, such as charge gradient microscopy (CGM) based on the collection of surface charge on the biased ferroelectric domains.

13.
Sci Rep ; 10(1): 12025, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32694524

RESUMO

Wolbachia is one of the most abundant facultative intracellular symbionts in arthropods. It alters host biology in diverse ways, including the induction of reproductive manipulation, association of nutrient supplier and protection against pathogens. Aphids are a group of insects which exhibit interesting biological characteristics such as complex life cycles, alteration of sexual and asexual reproduction and shifts between two different hosts. Wolbachia is widely present in many orders of insects, but so far limited studies on Wolbachia in aphids have been carried out. Galling aphids are a group of aphids that induce galls on their primary host plants at specific life stage. In this study, 15 natural populations representing nine galling aphid species were analyzed for the presence of Wolbachia using species-specific primer pairs. Wolbachia presence in galling aphids was quite low and varied significantly among aphid populations. Only three of the 15 populations we analyzed had detectable Wolbachia and the overall infection rate was 20%. Two Wolbachia strains, O and B, were identified from the galling aphids Kaburagia rhusicola and Schlechtendalia chinensis. Strain O was for the first time to be found in aphids, and it is likely involved with the life stages of galling aphids living in closed microenvironments with specific survival strategies that are different from free-living aphids.


Assuntos
Afídeos/microbiologia , Filogenia , Wolbachia/classificação , Wolbachia/genética , Animais , Genes Bacterianos , Genoma Bacteriano , RNA Bacteriano , RNA Ribossômico 16S/genética
14.
Zhongguo Yi Liao Qi Xie Za Zhi ; 44(3): 205-209, 2020 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-32621426

RESUMO

Aiming at the medical practice problems of the surgical steel medical instruments, such as the crevice corrosion, the poor mechanical compatibility and the Ni, Cr plasma exudation, the laser deposition of Ti-6Al-4V alloy cladding layer at the local functional area as alternative coating was proposed and realized as a new process method. The accurate element content and good formability Ti-6Al-4V cladding powder was chosen, the low power and high duty cycle optimized laser process was adopt, the alternative coating of good fusion and low dilution was prepared. Through the elemental line scanning, the interface microstructure analysis and the experiments of basic mechanical properties, the basic properties of the cladding were characterized and verified. The experiments results showed that, the Ti, Al and V contents of the top coating were respectively about 88%, 4.9% and 3.9%, no sensitizing ions such as Cr and Ni were detected. Initial equiaxed α phase, flake ß phase dist were distributed in the coating and interface, the α' martensite was precipitated at the boundary of the flake ß phase, some refined granular ß phase dispersion pinned to the grain boundary of basket structure. The microhardness of cladding layer was 352.08~312.76 HV0.1. The friction coefficient of the cladding layer was about 0.22~0.65. A new technology and method reference for improving and upgrading the performance of surgical medical devices is provided by this research.


Assuntos
Aço , Ligas , Corrosão , Teste de Materiais , Titânio
15.
PLoS One ; 13(11): e0200049, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30408037

RESUMO

Schlechtendalia chinensis, a gall-inducing aphid, has two host plants in its life cycle. Its wintering host is a moss (typically Plagiomnium maximoviczii) and its main host is Rhus chinensis (Sumac), on which it forms galls during the summer. This study investigated bacteria associated with S. chinensis living on the two different host plants by sequencing 16S rRNAs. A total of 183 Operational Taxonomic Units (OTUs) from 50 genera were identified from aphids living on moss, whereas 182 OTUs from 49 genera were found from aphids living in Sumac galls. The most abundant bacterial genus among identified OTUs from aphids feeding on both hosts was Buchnera. Despite similar numbers of OTUs, the composition of bacterial taxa showed significant differences between aphids living on moss and those living on R. chinensis. Specifically, there were 12 OTUs from 5 genera (family) unique to aphids living on moss, and 11 OTUs from 4 genera (family) unique to aphids feeding in galls on R. chinensis. Principal Coordinate Analysis (PCoA) also revealed that bacteria from moss-residing aphids clustered differently from aphids collected from galls. Our results provide a foundation for future analyses on the roles of symbiotic bacteria in plant-aphid interactions in general, and how gall-specific symbionts differ in this respect.


Assuntos
Afídeos/microbiologia , Bactérias/isolamento & purificação , Bryopsida/parasitologia , Microbiota , Rhus/parasitologia , Animais , Bactérias/classificação , Bactérias/genética , Análise por Conglomerados , Análise de Componente Principal , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética
16.
Phys Chem Chem Phys ; 20(2): 916-924, 2018 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-29230450

RESUMO

The effective charge and evolution of single chains of a DNA i-motif during its unfolding process are investigated at the single molecule level. Using fluorescence correlation spectroscopy and photon counting histograms, the single chain dimensions and electrical potential of cytosine-rich human telomeric oligonucleotides are monitored, during their unfolding from the i-motif to the random coil state. It is discovered that the effective charge density of the DNA chain is very sensitive to conformation changes and the results remarkably expose the existence of an intermediate state of the unfolding process. A huge difference in pH value exists in the vicinity of the DNA chain and the bulk solution, depending on the salt concentration, as reflected by a down-shift in the pH value of unfolding. The presence of an external salt in the solution helps to stabilize the i-motif structure at low pH values due to the reduction of the effective charge density. It can also destabilize the folded structure in the pH range of the conformation transition due to the elevation of the local pH value, encouraging the deprotonation of the cytosine groups. These results provide new information for understanding the structure and stability of i-motif DNA, and its biological function, as well as the building blocks for smart nanomaterials.


Assuntos
DNA/química , Conformação de Ácido Nucleico , Motivos de Nucleotídeos , Dobramento de Proteína , Telômero/química , Citosina/química , Oligonucleotídeos , Desnaturação Proteica , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...