Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Food Chem ; 450: 139209, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38615529

RESUMO

Adenosine triphosphate (ATP) plays a vital role in physiological processes and is an essential indicator of microbial content in food. Herein, a new sensitive, rapid and water-soluble probe for ATP detection was developed. Rhodamine B and pentaethylenehexamine were employed to design and synthesise the probe rhodamine-pentaethylenehexamine (RP) for selective ATP detection. The synthesised probe RP was characterized using Fourier transform infrared, NMR and dynamic light scattering size distributions. Upon the addition of ATP, the probe exhibited a distinct change in fluorescence intensity, with fluorescence emission at 580 nm. A linear relationship was observed between fluorescence intensity and ATP concentrations at 0-50 µmol/L, with a limit of detection of 10.97 × 10-9 mol/L. The results of the zeta potential and molecular dynamics simulation demonstrated that the detection mechanism of the probe RP is associated with the electrostatic adsorption interaction between the multi-positively charged sites of RP and the negatively charged triphosphate structure of ATP. Our study provides new insights into improving charge site identification in small molecule detection. Furthermore, the successful detection of ATP on meat surfaces indicates that RP has the potential to assess meat freshness.


Assuntos
Trifosfato de Adenosina , Corantes Fluorescentes , Carne , Rodaminas , Trifosfato de Adenosina/análise , Trifosfato de Adenosina/química , Rodaminas/química , Corantes Fluorescentes/química , Animais , Carne/análise , Espectrometria de Fluorescência/métodos
2.
Mol Cancer ; 23(1): 75, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582847

RESUMO

Tertiary lymphoid structures (TLS) are clusters of immune cells that resemble and function similarly to secondary lymphoid organs (SLOs). While TLS is generally associated with an anti-tumour immune response in most cancer types, it has also been observed to act as a pro-tumour immune response. The heterogeneity of TLS function is largely determined by the composition of tumour-infiltrating lymphocytes (TILs) and the balance of cell subsets within the tumour-associated TLS (TA-TLS). TA-TLS of varying maturity, density, and location may have opposing effects on tumour immunity. Higher maturity and/or higher density TLS are often associated with favorable clinical outcomes and immunotherapeutic response, mainly due to crosstalk between different proportions of immune cell subpopulations in TA-TLS. Therefore, TLS can be used as a marker to predict the efficacy of immunotherapy in immune checkpoint blockade (ICB). Developing efficient imaging and induction methods to study TA-TLS is crucial for enhancing anti-tumour immunity. The integration of imaging techniques with biological materials, including nanoprobes and hydrogels, alongside artificial intelligence (AI), enables non-invasive in vivo visualization of TLS. In this review, we explore the dynamic interactions among T and B cell subpopulations of varying phenotypes that contribute to the structural and functional diversity of TLS, examining both existing and emerging techniques for TLS imaging and induction, focusing on cancer immunotherapies and biomaterials. We also highlight novel therapeutic approaches of TLS that are being explored with the aim of increasing ICB treatment efficacy and predicting prognosis.


Assuntos
Neoplasias , Estruturas Linfoides Terciárias , Humanos , Inteligência Artificial , Prognóstico , Neoplasias/terapia , Linfócitos B/patologia , Fenótipo , Microambiente Tumoral , Estruturas Linfoides Terciárias/genética , Estruturas Linfoides Terciárias/patologia
3.
Front Pharmacol ; 15: 1359319, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38584597

RESUMO

The α2-adrenoceptor agonist dexmedetomidine is a commonly used drug for sedatives in clinics and has analgesic effects; however, its mechanism of analgesia in the spine remains unclear. In this study, we systematically used behavioural and transcriptomic sequencing, pharmacological intervention, electrophysiological recording and ultrasound imaging to explore the analgesic effects of the α2-adrenoceptor and its molecular mechanism. Firstly, we found that spinal nerve injury changed the spinal transcriptome expression, and the differential genes were mainly related to calcium signalling and tissue metabolic pathways. In addition, α2-adrenoceptor mRNA expression was significantly upregulated, and α2-adrenoceptor was significantly colocalised with markers, particularly neuronal markers. Intrathecal dexmedetomidine suppressed neuropathic pain and acute inflammatory pain in a dose-dependent manner. The transcriptome results demonstrated that the analgesic effect of dexmedetomidine may be related to the modulation of neuronal metabolism. Weighted gene correlation network analysis indicated that turquoise, brown, yellow and grey modules were the most correlated with dexmedetomidine-induced analgesic effects. Bioinformatics also annotated the involvement of metabolic processes and neural plasticity. A cardiovascular-mitochondrial interaction was found, and ultrasound imaging revealed that injection of dexmedetomidine significantly enhanced spinal cord perfusion in rats with neuropathic pain, which might be regulated by pyruvate dehydrogenase kinase 4 (pdk4), cholesterol 25-hydroxylase (ch25 h) and GTP cyclohydrolase 1 (gch1). Increasing the perfusion doses of dexmedetomidine significantly suppressed the frequency and amplitude of spinal nerve ligation-induced miniature excitatory postsynaptic currents. Overall, dexmedetomidine exerts analgesic effects by restoring neuronal metabolic processes through agonism of the α2-adrenoceptor and subsequently inhibiting changes in synaptic plasticity.

4.
ESC Heart Fail ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629342

RESUMO

AIMS: In an era of evolving diagnostic possibilities, existing diagnostic systems are not fully sufficient to promptly recognize patients with early-stage hypertrophic cardiomyopathy (HCM) without symptomatic and instrumental features. Considering the sudden death of HCM, developing a novel diagnostic model to clarify the patients with early-stage HCM and the immunological characteristics can avoid misdiagnosis and attenuate disease progression. METHODS AND RESULTS: Three hundred eighty-five samples from four independent cohorts were systematically retrieved. The weighted gene co-expression network analysis, differential expression analysis (|log2(foldchange)| > 0.5 and adjusted P < 0.05), and protein-protein interaction network were sequentially performed to identify HCM-related hub genes. With a machine learning algorithm, the least absolute shrinkage and selection operator regression algorithm, a stable diagnostic model was developed. The immune-cell infiltration and biological functions of HCM were also explored to characterize its underlying pathogenic mechanisms and the immune signature. Two key modules were screened based on weighted gene co-expression network analysis. Pathogenic mechanisms relevant to extracellular matrix and immune pathways have been discovered. Twenty-seven co-regulated genes were recognized as HCM-related hub genes. Based on the least absolute shrinkage and selection operator algorithm, a stable HCM diagnostic model was constructed, which was further validated in the remaining three cohorts (n = 385). Considering the tight association between HCM and immune-related functions, we assessed the infiltrating abundance of various immune cells and stromal cells based on the xCell algorithm, and certain immune cells were significantly different between high-risk and low-risk groups. CONCLUSIONS: Our study revealed a number of hub genes and novel pathways to provide potential targets for the treatment of HCM. A stable model was developed, providing an efficient tool for the diagnosis of HCM.

5.
BMC Biol ; 22(1): 69, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519942

RESUMO

BACKGROUND: Recently, long non-coding RNAs (lncRNAs) have been demonstrated as essential roles in tumor immune microenvironments (TIME). Nevertheless, researches on the clinical significance of TIME-related lncRNAs are limited in lung adenocarcinoma (LUAD). METHODS: Single-cell RNA sequencing and bulk RNA sequencing data are integrated to identify TIME-related lncRNAs. A total of 1368 LUAD patients are enrolled from 6 independent datasets. An integrative machine learning framework is introduced to develop a TIME-related lncRNA signature (TRLS). RESULTS: This study identified TIME-related lncRNAs from integrated analysis of single­cell and bulk RNA sequencing data. According to these lncRNAs, a TIME-related lncRNA signature was developed and validated from an integrative procedure in six independent cohorts. TRLS exhibited a robust and reliable performance in predicting overall survival. Superior prediction performance barged TRLS to the forefront from comparison with general clinical features, molecular characters, and published signatures. Moreover, patients with low TRLS displayed abundant immune cell infiltration and active lipid metabolism, while patients with high TRLS harbored significant genomic alterations, high PD-L1 expression, and elevated DNA damage repair (DDR) relevance. Notably, subclass mapping analysis of nine immunotherapeutic cohorts demonstrated that patients with high TRLS were more sensitive to immunotherapy. CONCLUSIONS: This study developed a promising tool based on TIME-related lncRNAs, which might contribute to tailored treatment and prognosis management of LUAD patients.


Assuntos
Adenocarcinoma , Neoplasias Pulmonares , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Análise de Sequência de RNA , Reparo do DNA , Pulmão , Neoplasias Pulmonares/genética , Microambiente Tumoral/genética
6.
JCO Precis Oncol ; 8: e2300405, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38547420

RESUMO

PURPOSE: Long noncoding RNAs (lncRNAs) were recently implicated in modifying pyroptosis. Nonetheless, pyroptosis-related lncRNAs and their possible clinical relevance persist largely uninvestigated in lung adenocarcinoma (LUAD). MATERIALS AND METHODS: A sum of 921 samples were collected from three independent data sets. We obtained pyroptosis-related genes from both the Molecular Signatures Database and relevant literature sources and used four machine learning techniques, comprising stepwise Cox, ridge regression, least absolute shrinkage and selection operator, and random forest. Multiple bioinformatics approaches were used to further investigate the underlying mechanisms. RESULTS: In total, 39 differentially expressed pyroptosis genes were identified by comparing normal and tumor samples. Correlation analysis revealed 933 pyroptosis-related lncRNAs. Furthermore, univariate Cox regression determined 11 lncRNAs that exhibited stable associations with prognosis in the three cohorts, which were used to construct the pyroptosis-derived lncRNA signature. After analyzing the optimal results from four machine learning algorithms, we ultimately selected random forest to develop the pyroptosis-derived lncRNA signature. This signature was proven to be an independent prognostic factor and exhibited robust performance in three cohorts. CONCLUSION: We provided novel insight and established a pyroptosis-derived lncRNA signature for patients with LUAD, exhibiting strong predictive capabilities in both the training and validation sets.


Assuntos
Adenocarcinoma , RNA Longo não Codificante , Humanos , Piroptose , RNA Longo não Codificante/genética , Prognóstico , Adenocarcinoma/diagnóstico , Adenocarcinoma/genética , Pulmão
7.
Gels ; 10(2)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38391441

RESUMO

Composite emulsion gel can effectively mimic animal adipose tissue. In this study, composite emulsion gels composed of soy protein isolates and konjac glucomannan (KGM) were prepared as plant-based cubic fat substitutes (CFS). The effects of CFS on the quality and structure of pork patties were investigated in terms of the proximate composition, lipid oxidation stability, technological characteristics, color, sensory attributes, texture, thermo-rheological behavior, and microstructure. CFS samples composed of various ratios of KGM were added to lean meat patties to ascertain the optimal CFS composition for its potential replacement of pork back fat in patties. The addition of CFS containing 7.0% KGM was found to decrease the hardness of the lean meat patties by 71.98% while simultaneously improving their sensory quality. The replacement of pork back fat with CFS also reduced the fat content of the patties to as little as 3.65%. Furthermore, the addition of CFS enhanced the technological characteristics, lipid oxidation stability, and surface color of the fat-replaced patties, with no significant impact on their overall acceptability. The gel network of the patties was shown to be fine and remained compact as the fat replacement ratio increased to 75%, while the texture parameters, storage modulus, and fractal dimension all increased. Quality and structure improvements may allow the composite emulsion gels to replace fat in pork patties to support a healthy diet. This study may be beneficial for the application and development of plant-based cubic fat substitutes.

9.
J Proteome Res ; 23(2): 760-774, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38153233

RESUMO

Approximately 10-15% of stage II and 25-30% of stage III colorectal cancer (CRC) patients experience recurrence within 5 years after surgery, and existing taxonomies are insufficient to meet the needs of clinical precision treatment. Thus, robust biomarkers and precise management were urgently required to stratify stage II and III CRC and identify potential patients who will benefit from postoperative adjuvant therapy. Alongside, interactions of ligand-receptor pairs point to an emerging direction in tumor signaling with far-reaching implications for CRC, while their impact on tumor subtyping has not been elucidated. Herein, based on multiple large-sample multicenter cohorts and perturbations of the ligand-receptor interaction network, four well-characterized ligand-receptor-driven subtypes (LRDS) were established and further validated. These molecular taxonomies perform with unique heterogeneity in terms of molecular characteristics, immune and mutational landscapes, and clinical features. Specifically, MEIS2, a key LRDS4 factor, performs significant associations with proliferation, invasion, migration, and dismal prognosis of stage II/III CRC, revealing promising directions for prognostic assessment and individualized treatment of CRC patients. Overall, our study sheds novel insights into the implications of intercellular communication on stage II/III CRC from a ligand-receptor interactome perspective and revealed MEIS2 as a key factor in the aggressive progression and prognosis for stage II/III CRC.


Assuntos
Neoplasias Colorretais , Humanos , Ligantes , Prognóstico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Mutação , Transdução de Sinais , Fatores de Transcrição/genética , Estadiamento de Neoplasias , Biomarcadores Tumorais/genética , Proteínas de Homeodomínio/genética
10.
J Am Heart Assoc ; 12(24): e030564, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38063194

RESUMO

BACKGROUND: Chronic kidney disease (CKD) is closely associated with cardiovascular disease. We aimed to examine the association of Life's Essential 8 (LE8), the recently updated measurement of cardiovascular health, with the prevalence of CKD among US adults. METHODS AND RESULTS: This population-based cross-sectional study used data from the National Health and Nutrition Examination Survey from 2007 to 2018 and included adults aged ≥20 years. Multivariable logistic and restricted cubic spline models were used to assess the associations between LE8 and CKD. Among 24 960 participants, 4437 were determined to have CKD (weighted percentage, 14.11%). After the adjustment of potential confounders, higher LE8 scores were associated with reduced odds of CKD (odds ratio for each 10-point increase, 0.79 [95% CI, 0.76-0.83]), and a nonlinear dose-response relationship was observed. Similar patterns were also identified in the associations of health behavior and health factor scores with CKD. Meanwhile, higher scores for blood glucose (odds ratio, for each 10-point increase, 0.88 [95% CI, 0.87-0.90]) and blood pressure (odds ratio, for each 10-point increase, 0.92 [95% CI, 0.91-0.94]) in the LE8 component are significantly associated with a lower prevalence of CKD. The inversed association of LE8 score and CKD was significantly stronger among middle-aged, male, and coupled participants. CONCLUSIONS: LE8 was negatively associated with the prevalence of CKD in a nonlinear fashion. Promoting adherence to optimal cardiovascular health levels may be beneficial to reduce the burden of CKD.


Assuntos
Doenças Cardiovasculares , Insuficiência Renal Crônica , Adulto , Pessoa de Meia-Idade , Humanos , Masculino , Estados Unidos/epidemiologia , Inquéritos Nutricionais , Estudos Transversais , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/epidemiologia , Pulmão , Pressão Sanguínea , Doenças Cardiovasculares/epidemiologia , Fatores de Risco
11.
J Craniofac Surg ; 34(8): 2563-2568, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37782137

RESUMO

Scaffolds play an important role in bone tissue engineering. The ideal engineered scaffold needs to be biocompatible, bioactive, and able to regulate immune cells to enhance bone regeneration. In this study, magnesium (Mg)-contained poly(lactic-co-glycolic acid) (PLGA) scaffolds (hereinafter, referred to as PLGA-2Mg) were fabricated by 3-dimensional printing using a mixture of PLGA and MgSO 4 powder. Poly(lactic-co-glycolic acid) scaffolds (hereinafter, referred to as PLGA) were also fabricated by 3-dimensional printing and were used as control. The biocompatibility, immunoregulatory ability, and osteogenic properties of PLGA-2Mg were analyzed and compared with those of PLGA. The results indicate that the incorporation of Mg increased the Young modulus and surface roughness of the scaffold, but did not affect its degradation. The PLGA-2Mg further promoted the adhesion and proliferation of MC3T3-E1 cells compared with PLGA, which indicates its improved biocompatibility and bioactivity. In addition, PLGA-2Mg inhibited the polarization of RAW 264.7 cells toward the M1 phenotype by down-regulating the IL-1ß , IL-6 , and iNOs gene expression when challenged with lipopolysaccharide stimulation. In contrast, it promoted the polarization of RAW 264.7 cells toward the M2 phenotype by up-regulating the TGF-ß , IL-10 , and Arg-1 gene expression without lipopolysaccharide stimulation. Finally, MC3T3-E1 cells were cocultured with RAW 264.7 cells and scaffolds using a transwell system. It was found that the expression level of osteogenic-related genes ( ALP , COL-1 , BMP2 , and BSP ) was significantly upregulated in the PLGA-2Mg group compared with that in the PLGA group. Consequently, PLGA-2Mg with increased biocompatibility and bioactivity can promote osteogenesis through immunoregulation and has the potential to be used as a novel scaffold in bone tissue engineering.


Assuntos
Magnésio , Osteogênese , Humanos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Magnésio/farmacologia , Alicerces Teciduais , Ácido Poliglicólico , Glicóis , Lipopolissacarídeos , Engenharia Tecidual/métodos
12.
Cell Signal ; 111: 110879, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37659727

RESUMO

Previous researches have provided evidence for the significant involvement of pseudogenes in immune-related functions across different types of cancer. However, the mechanisms by which pseudogenes regulate immunity in ovarian cancer (OV) and their potential impact on clinical outcomes remain unclear. To address this gap in knowledge, our study utilized a novel computational framework to analyze a total of 491 samples from three public datasets. We employed a combination of 10 machine-learning algorithms to construct a signature known as the tumor-infiltrating immune cells-related pseudogenes signature (TIICPS). The TIICPS, consisting of 12 pseudogenes, demonstrated independent prognostic value for overall survival, surpassing conventional clinical traits, 62 published signatures, and TP53 and BRCA mutation status in three cohorts. Patients with low TIICPS exhibited heightened immune-related pathways, intricate genomic alterations, substantial immune infiltration, and greater potential for immunotherapy efficacy. Consequently, TIICPS holds promise as a predictive tool for prognosis and immunotherapy response in ovarian cancer.

13.
Mikrochim Acta ; 190(10): 378, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37672131

RESUMO

The proof-of-concept of sensitive electrochemical immunoassay for the quantitative monitoring of human epidermal growth factor receptor 2 (HER2) is reported. The assay is carried out on iron nitrogen-doped carbon (FeNC) nanozyme-modified screen-printed carbon electrode using chronoamperometry. Introduction of target HER2 can induce the sandwiched immunoreaction between anti-HER2 monoclonal antibody-coated microplate and biotinylated anti-HER2 polyclonal antibody. Thereafter, streptavidin-glucose oxidase (GOx) conjugate is bonded to the detection antibody. Upon addition of glucose, 3,3',5,5'-tetramethylbenzidine (TMB) is oxidized through the produced H2O2 with the assistance of GOx and FeNC nanozyme. The oxidized TMB is determined via chronoamperometry. Experimental results revealed that electrochemical immunosensing system exhibited good amperometric response, and allowed the detection of target HER2 as low as 4.5 pg/mL. High specificity and long-term stability are acquired with FeNC nanozyme-based sensing strategy. Importantly, our system provides a new opportunity for protein diagnostics.


Assuntos
Anticorpos Monoclonais , Peróxido de Hidrogênio , Humanos , Carbono , Glucose Oxidase , Imunoensaio
14.
Mol Cancer ; 22(1): 130, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563639

RESUMO

The reversible oxidation-reduction homeostasis mechanism functions as a specific signal transduction system, eliciting related physiological responses. Disruptions to redox homeostasis can have negative consequences, including the potential for cancer development and progression, which are closely linked to a series of redox processes, such as adjustment of reactive oxygen species (ROS) levels and species, changes in antioxidant capacity, and differential effects of ROS on downstream cell fate and immune capacity. The tumor microenvironment (TME) exhibits a complex interplay between immunity and regulatory cell death, especially autophagy and apoptosis, which is crucially regulated by ROS. The present study aims to investigate the mechanism by which multi-source ROS affects apoptosis, autophagy, and the anti-tumor immune response in the TME and the mutual crosstalk between these three processes. Given the intricate role of ROS in controlling cell fate and immunity, we will further examine the relationship between traditional cancer therapy and ROS. It is worth noting that we will discuss some potential ROS-related treatment options for further future studies.


Assuntos
Neoplasias , Microambiente Tumoral , Humanos , Espécies Reativas de Oxigênio/metabolismo , Oxirredução , Apoptose , Autofagia , Neoplasias/metabolismo
15.
Cell Mol Life Sci ; 80(9): 263, 2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37598126

RESUMO

Iron-dependent lipid peroxidation causes ferroptosis, a form of regulated cell death. Crucial steps in the formation of ferroptosis include the accumulation of ferrous ions (Fe2+) and lipid peroxidation, of which are controlled by glutathione peroxidase 4 (GPX4). Its crucial role in stopping the spread of cancer has been shown by numerous studies undertaken in the last ten years. Epithelial-mesenchymal transition (EMT) is the process by which epithelial cells acquire mesenchymal characteristics. EMT is connected to carcinogenesis, invasiveness, metastasis, and therapeutic resistance in cancer. It is controlled by a range of internal and external signals and changes the phenotype from epithelial to mesenchymal like. Studies have shown that mesenchymal cancer cells tend to be more ferroptotic than their epithelial counterparts. Drug-resistant cancer cells are more easily killed by inducers of ferroptosis when they undergo EMT. Therefore, understanding the interaction between ferroptosis and EMT will help identify novel cancer treatment targets. In-depth discussion is given to the regulation of ferroptosis, the potential application of EMT in the treatment of cancer, and the relationships between ferroptosis, EMT, and signaling pathways associated with tumors. Invasion, metastasis, and inflammation in cancer all include ferroptosis and EMT. The goal of this review is to provide suggestions for future research and practical guidance for applying ferroptosis and EMT in clinical practice.


Assuntos
Ferroptose , Neoplasias , Humanos , Transição Epitelial-Mesenquimal , Neoplasias/tratamento farmacológico , Carcinogênese , Células Epiteliais , Ferro
16.
BMC Nephrol ; 24(1): 233, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37559023

RESUMO

BACKGROUND: Hyperkalaemia is a known risk factor for cardiac arrhythmia and mortality in patients on haemodialysis. Despite standard adequate haemodialysis, hyperkalaemia is common in patients with end-stage renal disease (ESRD) at interdialytic intervals. Data on hyperkalaemia burden and its effects on dialysis patterns and serum potassium (sK) fluctuations in patients on haemodialysis in China remain limited. The prospective, observational cohort study (PRECEDE-K; NCT04799067) investigated the prevalence, recurrence, and treatment patterns of hyperkalaemia in Chinese patients with ESRD on haemodialysis. METHODS: Six hundred adult patients were consecutively enrolled from 15 secondary and tertiary hospitals in China. In this interim analysis, we report the baseline characteristics of the cohort, the prevalence of predialysis hyperkalaemia (sK > 5.0 mmol/L), and the trends in serum-dialysate potassium gradient and intradialytic sK shift at Visit 1 (following a long interdialytic interval [LIDI]). RESULTS: At baseline, most patients (85.6%) received three-times weekly dialysis; mean duration was 4.0 h. Mean urea reduction ratio was 68.0% and Kt/V was 1.45; 60.0% of patients had prior hyperkalaemia (previous 6 months). At Visit 1, mean predialysis sK was 4.83 mmol/L, and 39.6% of patients had hyperkalaemia. Most patients (97.7%) received a dialysate potassium concentration of 2.0 mmol/L. The serum-dialysate potassium gradient was greater than 3 mmol/L for over 40% of the cohort (1- < 2, 2- < 3, 3- < 4, and ≥ 4 mmol/L in 13.6%, 45.1%, 35.7%, and 5.2% of patients, respectively; mean: 2.8 mmol/L). The intradialytic sK reduction was 1- < 3 mmol/L for most patients (0- < 1, 1- < 2, 2- < 3, and ≥ 3 mmol/L in 24.2%, 62.2%, 12.8%, and 0.9% of patients, respectively; mean: 1.4 mmol/L). CONCLUSIONS: Hyperkalaemia after a LIDI was common in this real-world cohort of Chinese patients despite standard adequate haemodialysis, and led to large serum-dialysate potassium gradients and intradialytic sK shifts. Previous studies have shown hyperkalaemia and sK fluctuations are highly correlated with poor prognosis. Effective potassium-lowering treatments should be evaluated for the improvement of long-term prognosis through the control of hyperkalaemia and sK fluctuations. TRIAL REGISTRATION: ClinicalTrials.gov, NCT04799067.


Assuntos
Hiperpotassemia , Falência Renal Crônica , Adulto , Humanos , Diálise Renal/efeitos adversos , Hiperpotassemia/epidemiologia , Estudos Prospectivos , Prevalência , População do Leste Asiático , Falência Renal Crônica/epidemiologia , Falência Renal Crônica/terapia , Potássio , Soluções para Diálise
17.
Br J Cancer ; 129(5): 741-753, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37414827

RESUMO

Radiogenomics, focusing on the relationship between genomics and imaging phenotypes, has been widely applied to address tumour heterogeneity and predict immune responsiveness and progression. It is an inevitable consequence of current trends in precision medicine, as radiogenomics costs less than traditional genetic sequencing and provides access to whole-tumour information rather than limited biopsy specimens. By providing voxel-by-voxel genetic information, radiogenomics can allow tailored therapy targeting a complete, heterogeneous tumour or set of tumours. In addition to quantifying lesion characteristics, radiogenomics can also be used to distinguish benign from malignant entities, as well as patient characteristics, to better stratify patients according to disease risk, thereby enabling more precise imaging and screening. Here, we have characterised the radiogenomic application in precision medicine using a multi-omic approach. we outline the main applications of radiogenomics in diagnosis, treatment planning and evaluations in the field of oncology with the aim of developing quantitative and personalised medicine. Finally, we discuss the challenges in the field of radiogenomics and the scope and clinical applicability of these methods.


Assuntos
Neoplasias , Medicina de Precisão , Humanos , Medicina de Precisão/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/genética , Neoplasias/radioterapia , Oncologia , Genômica/métodos , Fenótipo
18.
Cell Signal ; 110: 110811, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37468054

RESUMO

Pancreatic cancer (PC) was featured by dramatic heterogeneity and dismal outcomes. An ideal classification strategy capable of achieving risk stratification and individualized treatment is urgently needed to significantly improve prognosis. In this study, using the 105 prognostic cancer essential genes identified by genome-scale CRISPR-Cas9 screening and univariate Cox analysis, we established and verified three heterogeneous subtypes via non-negative matrix factorization (NMF) and nearest template prediction (NTP) algorithms in the TCGA-PAAD cohort (176 samples) and four multi-center cohorts (233 samples), respectively. Among them, C1 with the worst prognosis was enriched in immune-related pathways, possessed superior infiltration abundance of immune cells and immune checkpoint molecules expression, and might be most sensitive to immunotherapy. C3, owing a moderate prognosis, might be featured by proliferative biological function, and despite its highest immunogenicity, the defects in antigen processing and presentation ability coupled with barren immune environment render it ineffective for immunotherapy, while it had potential sensitivity to paclitaxel and methotrexate. Besides, C2 harbored the best prognosis and was characterized by metabolism-related functions. These results could deepen our understanding of PC molecular heterogeneity and provide a trustworthy reference for prognostic stratification management and precision medicine in clinical practice.


Assuntos
Detecção Precoce de Câncer , Neoplasias Pancreáticas , Humanos , Sistemas CRISPR-Cas/genética , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Imunoterapia , Neoplasias Pancreáticas
19.
BMC Med ; 21(1): 264, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468867

RESUMO

BACKGROUND: Since the coronavirus disease 2019 (COVID-19) outbreak, many COVID-19 variants have emerged, causing several waves of pandemics and many infections. Long COVID-19, or long-term sequelae after recovery from COVID-19, has aroused worldwide concern because it reduces patient quality of life after rehabilitation. We aimed to characterize the functional differential profile of the oral and gut microbiomes and serum metabolites in patients with gastrointestinal symptoms associated with long COVID-19. METHODS: We prospectively collected oral, fecal, and serum samples from 983 antibiotic-naïve patients with mild COVID-19 and performed a 3-month follow-up postdischarge. Forty-five fecal and saliva samples, and 25 paired serum samples were collected from patients with gastrointestinal symptoms of long COVID-19 at follow-up and from healthy controls, respectively. Eight fecal and saliva samples were collected without gastrointestinal symptoms of long COVID-19 at follow-up. Shotgun metagenomic sequencing of fecal samples and 2bRAD-M sequencing of saliva samples were performed on these paired samples. Two published COVID-19 gut microbiota cohorts were analyzed for comparison. Paired serum samples were analyzed using widely targeted metabolomics. RESULTS: Mild COVID-19 patients without gastrointestinal symptoms of long COVID-19 showed little difference in the gut and oral microbiota during hospitalization and at follow-up from healthy controls. The baseline and 3-month samples collected from patients with gastrointestinal symptoms associated with long COVID-19 showed significant differences, and ectopic colonization of the oral cavity by gut microbes including 27 common differentially abundant genera in the Proteobacteria phylum, was observed at the 3-month timepoint. Some of these bacteria, including Neisseria, Lautropia, and Agrobacterium, were highly related to differentially expressed serum metabolites with potential toxicity, such as 4-chlorophenylacetic acid, 5-sulfoxymethylfurfural, and estradiol valerate. CONCLUSIONS: Our study characterized the changes in and correlations between the oral and gut microbiomes and serum metabolites in patients with gastrointestinal symptoms associated with long COVID-19. Additionally, our findings reveal that ectopically colonized bacteria from the gut to the oral cavity could exist in long COVID-19 patients with gastrointestinal symptoms, with a strong correlation to some potential harmful metabolites in serum.


Assuntos
COVID-19 , Humanos , Síndrome de COVID-19 Pós-Aguda , Assistência ao Convalescente , Qualidade de Vida , SARS-CoV-2 , Alta do Paciente , Fezes/microbiologia , Bactérias/genética , RNA Ribossômico 16S
20.
Phytomedicine ; 118: 154935, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37364420

RESUMO

BACKGROUND: The Fufang-zhenzhu-tiaozhi formula (FTZ), a traditional Chinese medicine (TCM) commonly used to treat metabolic diseases, potentially impacts the microbial ecosystem. Increasing evidence suggests that polysaccharides, bioactive components of TCMs, have great potential on kinds of diseases such as DKD by regulating intestinal flora. PURPOSE: This study aimed to investigate whether the polysaccharide components in FTZ (FTZPs) have beneficial effects in DKD mice via the gut-kidney axis. STUDY DESIGN AND METHODS: The DKD model in mice was established by streptozotocin combined with a high-fat diet (STZ/HFD). Losartan was used as a positive control, and FTZPs were administered at doses of 100 and 300 mg/kg daily. Renal histological changes were measured by H&E and Masson staining. Western blotting, quantitative real-time polymerase chain reaction (q-PCR) and immunohistochemistry were performed to analyze the effects of FTZPs on renal inflammation and fibrosis, which were further confirmed using RNA sequencing. Immunofluorescence was used to analyze the effects of FTZPs on colonic barrier function in DKD mice. Faecal microbiota transplantation (FMT) was used to evaluate the contribution of intestinal flora. 16S rRNA sequencing was utilized to analyze the composition of intestinal bacteria, and UPLC-QTOF-MS-based untargeted metabolomics was used to identify the metabolite profiles. RESULTS: Treatment with FTZPs attenuated kidney injury, as indicated by the decreased urinary albumin/creatinine ratio and improved renal architecture. FTZPs downregulated the expression of renal genes associated with inflammation, fibrosis, and systematically blunted related pathways. FTZPs also restored the colonic mucosal barrier and increased the expression of tight junction proteins (E-cadherin). The FMT experiment confirmed the substantial contribution of the FTZPs-reshaped microbiota to relieving DKD symptoms. Moreover, FTZPs elevated the content of short-chain fatty acids (propionic acid and butanoic acid) and increased the level of the SCFAs transporter Slc22a19. Intestinal flora disorders caused by diabetes, including the growth of the genera Weissella, Enterococcus and Akkermansia, were inhibited by FTZPs treatment. Spearman's analysis revealed that these bacteria were positively correlated with indicators of renal damage. CONCLUSION: These results show that oral administration of FTZPs, by altering SCFAs levels and the gut microbiome, is a therapeutic strategy for the treatment of DKD.


Assuntos
Diabetes Mellitus Experimental , Camundongos , Animais , Ecossistema , RNA Ribossômico 16S , Rim , Polissacarídeos/farmacologia , Inflamação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...