Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 384(6697): 757-762, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38753787

RESUMO

Electronic band convergence can have a beneficial impact on thermoelectric performance, but finding the right band-converged compositions is still time-consuming. We propose a method for designing a series of compositions with simultaneous band convergence in the high-entropy YbxCa1-xMgyZn2-ySb2 material by zeroing the weighted sum of crystal-field splitting energies of the parent compounds. We found that so-designed compositions have both larger power factors and lower thermal conductivities and that one of these compositions exhibits a large thermoelectric figure of merit value in comparison with to other p-type Zintls. Our material shows high stability both thermally and temporally. We then assembled an all-Zintl single-stage module, nontoxic and free of tellurium, that demonstrates an exceptional heat-to-electricity conversion efficiency exceeding 10% at a temperature difference of 475 kelvin.

2.
Chemosphere ; 359: 142276, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38761830

RESUMO

The production of solid wastes in the metallurgical industry has significant implications for land resources and environmental pollution. To address this issue, it is crucial to explore the potential of recycling these solid wastes to reduce land occupation while protecting the environment and promoting resource utilization. Steel slag, red mud, copper slag and steel picking waste liquor are examples of solid wastes generated during the metallurgical process that possess high iron content and Fe species, making them excellent catalysts for persulfate-based advanced oxidation processes (PS-AOPs). This review elucidates the catalytic mechanisms and pathways of Fe2+ and Fe0 in the activation PS. Additionally, it underscores the potential of metallurgical iron-containing solid waste (MISW) as a catalyst for PS activation, offering a viable strategy for its high-value utilization. Lastly, the article provides an outlook towards future challenges and prospects for MISW in PS activation for the degradation of organic pollutants.


Assuntos
Ferro , Resíduos Sólidos , Ferro/química , Catálise , Oxirredução , Metalurgia , Sulfatos/química , Poluentes Ambientais/química , Reciclagem/métodos , Poluição Ambiental/prevenção & controle
3.
Front Immunol ; 15: 1370254, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38524134

RESUMO

Introduction: Systemic Lupus Erythematosus (SLE) impacts the central nervous system (CNS), leading to severe neurological and psychiatric manifestations known as neuropsychiatric lupus (NPSLE). The complexity and heterogeneity of clinical presentations of NPSLE impede direct investigation of disease etiology in patients. The limitations of existing mouse models developed for NPSLE obstruct a comprehensive understanding of this disease. Hence, the identification of a robust mouse model of NPSLE is desirable. Methods: C57BL/6 mice transgenic for human MeCP2 (B6.Mecp2Tg1) were phenotyped, including autoantibody profiling through antigen array, analysis of cellularity and activation of splenic immune cells through flow cytometry, and measurement of proteinuria. Behavioral tests were conducted to explore their neuropsychiatric functions. Immunofluorescence analyses were used to reveal altered neurogenesis and brain inflammation. Various signaling molecules implicated in lupus pathogenesis were examined using western blotting. Results: B6.Mecp2Tg1 exhibits elevated proteinuria and an overall increase in autoantibodies, particularly in female B6.Mecp2Tg1 mice. An increase in CD3+CD4+ T cells in the transgenic mice was observed, along with activated germinal center cells and activated CD11b+F4/80+ macrophages. Moreover, the transgenic mice displayed reduced locomotor activity, heightened anxiety and depression, and impaired short-term memory. Immunofluorescence analysis revealed IgG deposition and immune cell infiltration in the kidneys and brains of transgenic mice, as well as altered neurogenesis, activated microglia, and compromised blood-brain barrier (BBB). Additionally, protein levels of various key signaling molecules were found to be differentially modulated upon MeCP2 overexpression, including GFAP, BDNF, Albumin, NCoR1, mTOR, and NLRP3. Discussion: Collectively, this work demonstrates that B6.Mecp2Tg1 mice exhibit lupus-like phenotypes as well as robust CNS dysfunctions, suggesting its utility as a new animal model for NPSLE.


Assuntos
Vasculite Associada ao Lúpus do Sistema Nervoso Central , Humanos , Animais , Camundongos , Feminino , Camundongos Transgênicos , Camundongos Endogâmicos C57BL , Autoanticorpos , Fenótipo , Proteinúria , Proteína 2 de Ligação a Metil-CpG/genética
4.
Nat Commun ; 14(1): 8085, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057306

RESUMO

The lack of desirable diffusion barrier layers currently prohibits the long-term stable service of bismuth telluride thermoelectric devices in low-grade waste heat recovery. Here we propose a new design principle of barrier layers beyond the thermal expansion matching criterion. A titanium barrier layer with loose structure is optimized, in which the low Young's modulus and particle sliding synergistically alleviates interfacial stress, while the TiTe2 reactant enables metallurgical bonding and ohmic contact between the barrier layer and the thermoelectric material, leading to a desirable interface characterized by high-thermostability, high-strength, and low-resistivity. Highly competitive conversion efficiency of 6.2% and power density of 0.51 W cm-2 are achieved for a module with leg length of 2 mm at the hot-side temperature of 523 K, and no degradation is observed following operation for 360 h, a record for stable service at this temperature, paving the way for its application in low-grade waste heat recovery.

5.
Science ; 382(6673): 921-928, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-37995213

RESUMO

Thermoelectric interface materials (TEiMs) are essential to the development of thermoelectric generators. Common TEiMs use pure metals or binary alloys but have performance stability issues. Conventional selection of TEiMs generally relies on trial-and-error experimentation. We developed a TEiM screening strategy that is based on phase diagram predictions by density functional theory calculations. By combining the phase diagram with electrical resistivity and melting points of potential reaction products, we discovered that the semimetal MgCuSb is a reliable TEiM for high-performance MgAgSb. The MgCuSb/MgAgSb junction exhibits low interfacial contact resistivity (ρc <1 microhm square centimeter) even after annealing at 553 kelvin for 16 days. The fabricated two-pair MgAgSb/Mg3.2Bi1.5Sb0.5 module demonstrated a high conversion efficiency of 9.25% under a 300 kelvin temperature gradient. We performed an international round-robin testing of module performance to confirm the measurement reliability. The strategy can be applied to other thermoelectric materials, filling a vital gap in the development of thermoelectric modules.

6.
Nat Commun ; 14(1): 4722, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37543679

RESUMO

Studies of vacancy-mediated anomalous transport properties have flourished in diverse fields since these properties endow solid materials with fascinating photoelectric, ferroelectric, and spin-electric behaviors. Although phononic and electronic transport underpin the physical origin of thermoelectrics, vacancy has only played a stereotyped role as a scattering center. Here we reveal the multifunctionality of vacancy in tailoring the transport properties of an emerging thermoelectric material, defective n-type ZrNiBi. The phonon kinetic process is mediated in both propagating velocity and relaxation time: vacancy-induced local soft bonds lower the phonon velocity while acoustic-optical phonon coupling, anisotropic vibrations, and point-defect scattering induced by vacancy shorten the relaxation time. Consequently, defective ZrNiBi exhibits the lowest lattice thermal conductivity among the half-Heusler family. In addition, a vacancy-induced flat band features prominently in its electronic band structure, which is not only desirable for electron-sufficient thermoelectric materials but also interesting for driving other novel physical phenomena. Finally, better thermoelectric performance is established in a ZrNiBi-based compound. Our findings not only demonstrate a promising thermoelectric material but also promote the fascinating vacancy-mediated anomalous transport properties for multidisciplinary explorations.

9.
Adv Mater ; 35(44): e2306097, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37607336

RESUMO

Developing non-precious catalysts with long-term catalytic durability and structural stability under industrial conditions is the key to practical alkaline anion exchange membrane (AEM) water electrolysis. Here, an energy-saving approach is proposed to synthesize defect-rich iron nickel oxyhydroxide for stability and efficiency toward the oxygen evolution reaction. Benefiting from in situ cation exchange, the nanosheet-nanoflake-structured catalyst is homogeneously embedded in, and tightly bonded to, its substrate, making it ultrastable at high current densities. Experimental and theoretical calculation results reveal that the introduction of Ni in FeOOH reduces the activation energy barrier for the catalytic reaction and that the purposely created oxygen defects not only ensure the exposure of active sites and maximize the effective catalyst surface but also modulate the local coordination environment and chemisorption properties of both Fe and Ni sites, thus lowering the energy barrier from *O to *OOH. Consequently, the optimized d-(Fe,Ni)OOH catalyst exhibits outstanding catalytic activity with long-term durability under both laboratory and industrial conditions. The large-area d-(Fe,Ni)OOH||NiMoN pair requires 1.795 V to reach a current density of 500 mA cm-2 at an absolute current of 12.5 A in an AEM electrolyzer for overall water electrolysis, showing great potential for industrial water electrolysis.

10.
Nanomicro Lett ; 15(1): 157, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37336833

RESUMO

NiMo-based nanostructures are among the most active hydrogen evolution reaction (HER) catalysts under an alkaline environment due to their strong water dissociation ability. However, these nanostructures are vulnerable to the destructive effects of H2 production, especially at industry-standard current densities. Therefore, developing a strategy to improve their mechanical strength while maintaining or even further increasing the activity of these nanocatalysts is of great interest to both the research and industrial communities. Here, a hierarchical interconnected NiMoN (HW-NiMoN-2h) with a nanorod-nanowire morphology was synthesized based on a rational combination of hydrothermal and water bath processes. HW-NiMoN-2h is found to exhibit excellent HER activity due to the accomodation of abundant active sites on its hierarchical morphology, in which nanowires connect free-standing nanorods, concurrently strengthening its structural stability to withstand H2 production at 1 A cm-2. Seawater is an attractive feedstock for water electrolysis since H2 generation and water desalination can be addressed simultaneously in a single process. The HER performance of HW-NiMoN-2h in alkaline seawater suggests that the presence of Na+ ions interferes with the reation kinetics, thus lowering its activity slightly. However, benefiting from its hierarchical and interconnected characteristics, HW-NiMoN-2h is found to deliver outstanding HER activity of 1 A cm-2 at 130 mV overpotential and to exhibit excellent stability at 1 A cm-2 over 70 h in 1 M KOH seawater.

11.
Environ Sci Pollut Res Int ; 30(31): 77905-77916, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37266784

RESUMO

The comprehensive utilization of iron ore tailings (IOTs) not only resolved environmental problems but also brought huge economic benefits. In this study, the synthetic route presented herein provides a novel method for the synthesis of ZSM-5 microspheres from IOTs. The effects of Si/Al molar ratios and the pH of the precursor solution on the formation of zeolite was evaluated by various analytical methods. The catalytic performance of the catalyst prepared by the solid-phase conversion method (denoted as MP-ZSM-5) was evaluated by methanol-to-propylene (MTP) reaction. Compared with the zeolite catalyst that synthesized via the conventional hydrothermal method (denoted as HM-ZSM-5), MP-ZSM-5 not only prolongs catalytic lifetime from 18.7 to 36.0 h but also has higher selectivity for propylene by MP-ZSM-5 (43.7%) than that for HM-ZSM-5 (38.6%). In addition, Kissinger-Akahira-Sunose (KAS) model is applied to the TG result to study the template removal process kinetics. The average activation energy values required for the removal of CTAB and TPABr are 201.11 ± 13.42 and 326.88 ± 16.91 kJ∙mol-1, respectively. Furthermore, this result is well coupled with the model-free kinetic algorithms to determine the conversion and isoconversion of the TPABr and CTAB decomposition in ZSM-5, which serves as important guidelines for the industrial production process.


Assuntos
Zeolitas , Zeolitas/química , Cetrimônio , Microesferas , Ferro/química
12.
J Phys Chem Lett ; 13(28): 6447-6454, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35816284

RESUMO

Lead-free highly luminescent CsCu2I3 perovskite has attracted much attention recently, but agreements on basic optical properties have remained unsettled. By correlating X-ray diffraction with the photoluminescence (PL) of CsCu2I3 single-crystal wires, we first show that blue PL at 420 nm originates from CuI. We then exclude defect states as a source for the broadband emission centered at 570 nm from the lack of defect absorption, PL under sub-bandgap photoexcitation, observations of a linear dependence of PL intensity on excitation laser power, and a strong spectral blueshift under mild hydrostatic pressure. Finally, using a model of the self-trapped exciton and the associated coordinate configuration diagram, we explain pressure evolutions of PL energy, intensity, and lifetime. Single-crystal wires also enable us to obtain polarization-dependent Raman spectra down to 10 cm-1 and confirm their respective ambient crystal structure of orthorhombic Cmcm and phase transition to Pbnm at ∼5 GPa.

13.
Science ; 377(6604): 433-436, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35862517

RESUMO

Semiconducting cubic boron arsenide (c-BAs) has been predicted to have carrier mobility of 1400 square centimeters per volt-second for electrons and 2100 square centimeters per volt-second for holes at room temperature. Using pump-probe transient reflectivity microscopy, we monitored the diffusion of photoexcited carriers in single-crystal c-BAs to obtain their mobility. With near-bandgap 600-nanometer pump pulses, we found a high ambipolar mobility of 1550 ± 120 square centimeters per volt-second, in good agreement with theoretical prediction. Additional experiments with 400-nanometer pumps on the same spot revealed a mobility of >3000 square centimeters per volt-second, which we attribute to hot electrons. The observation of high carrier mobility, in conjunction with high thermal conductivity, enables an enormous number of device applications for c-BAs in high-performance electronics and optoelectronics.

14.
Science ; 377(6604): 437-440, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35862526

RESUMO

Semiconductors with high thermal conductivity and electron-hole mobility are of great importance for electronic and photonic devices as well as for fundamental studies. Among the ultrahigh-thermal conductivity materials, cubic boron arsenide (c-BAs) is predicted to exhibit simultaneously high electron and hole mobilities of >1000 centimeters squared per volt per second. Using the optical transient grating technique, we experimentally measured thermal conductivity of 1200 watts per meter per kelvin and ambipolar mobility of 1600 centimeters squared per volt per second at the same locations on c-BAs samples at room temperature despite spatial variations. Ab initio calculations show that lowering ionized and neutral impurity concentrations is key to achieving high mobility and high thermal conductivity, respectively. The high ambipolar mobilities combined with the ultrahigh thermal conductivity make c-BAs a promising candidate for next-generation electronics.

15.
Nat Commun ; 13(1): 2482, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35523766

RESUMO

Doping is central for solid-state devices from transistors to thermoelectric energy converters. The interaction between electrons and dopants plays a pivotal role in carrier transport. Conventional theory suggests that the Coulomb field of the ionized dopants limits the charge mobility at high carrier densities, and that either the atomic details of the dopants are unimportant or the mobility can only be further degraded, while experimental results often show that dopant choice affects mobility. In practice, the selection of dopants is still mostly a trial-and-error process. Here we demonstrate, via first-principles simulation and comparison with experiments, that a large short-range perturbation created by selected dopants can in fact counteract the long-range Coulomb field, leading to electron transport that is nearly immune to the presence of dopants. Such "cloaking" of dopants leads to enhanced mobilities at high carrier concentrations close to the intrinsic electron-phonon scattering limit. We show that the ionic radius can be used to guide dopant selection in order to achieve such an electron-cloaking effect. Our finding provides guidance to the selection of dopants for solid-state conductors to achieve high mobility for electronic, photonic, and energy conversion applications.

16.
Proc Natl Acad Sci U S A ; 119(18): e2202382119, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35476529

RESUMO

SignificanceSeawater is one of the most abundant resources on Earth. Direct electrolysis of seawater is a transformative technology for sustainable hydrogen production without causing freshwater scarcity. However, this technology is severely impeded by a lack of robust and active oxygen evolution reaction (OER) electrocatalysts. Here, we report a highly efficient OER electrocatalyst composed of multimetallic layered double hydroxides, which affords superior catalytic performance and long-term durability for high-performance seawater electrolysis. To the best of our knowledge, this catalyst is among the most active for OER and it advances the development of seawater electrolysis technology.

17.
Adv Mater ; 34(21): e2201774, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35363922

RESUMO

Achieving efficient and durable nonprecious hydrogen evolution reaction (HER) catalysts for scaling up alkaline water/seawater electrolysis is desirable but remains a significant challenge. Here, a heterogeneous Ni-MoN catalyst consisting of Ni and MoN nanoparticles on amorphous MoN nanorods that can sustain large-current-density HER with outstanding performance is demonstrated. The hierarchical nanorod-nanoparticle structure, along with a large surface area and multidimensional boundaries/defects endows the catalyst with abundant active sites. The hydrophilic surface helps to achieve accelerated gas-release capabilities and is effective in preventing catalyst degradation during water electrolysis. Theoretical calculations further prove that the combination of Ni and MoN effectively modulates the electron redistribution at their interface and promotes the sluggish water-dissociation kinetics at the Mo sites. Consequently, this Ni-MoN catalyst requires low overpotentials of 61 and 136 mV to drive current densities of 100 and 1000 mA cm-2 , respectively, in 1 m KOH and remains stable during operation for 200 h at a constant current density of 100 or 500 mA cm-2 . This good HER catalyst also works well in alkaline seawater electrolyte and shows outstanding performance toward overall seawater electrolysis with ultralow cell voltages.

18.
Small ; 18(4): e2105642, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34825490

RESUMO

The catalytic hydrogen-evolving activities of transition-metal phosphides are greatly related to the phosphorus content, but the physical origin of performance enhancement remains ambiguous, and tuning the catalytic activity of nickel phosphides (NiP2 /Ni5 P4 ) remains challenging due to unfavorable H* adsorption. Here, a strategy is introduced to integrate P-rich NiP2 and P-poor Ni5 P4 into in-plane heterostructures by anion substitution, in which P atoms at the in-plane interfaces perform as active sites to adsorb H* and thus facilitate the hydrogen evolution reaction (HER) process via modulating the electronic structure between NiP2 and Ni5 P4 . Consequently, the NiP2 /Ni5 P4 hybrid exhibits an outstanding hydrogen-evolving activity, requiring only 30 and 76 mV to afford 10 and 100 mA cm-2 in acid, respectively. It surpasses most of the earth-abundant electrocatalysts thus far, and is comparable to Pt catalysts (30/72 mV at 10/100 mA cm-2 ). Particularly, it can run smoothly at large current density and only requires 247 mV to reach 2000 mA cm-2 . Detailed theoretical calculations reveal that its exceptional activity stems from the moderate overlap of density states between P 2p and H 1s orbitals, thus optimizing the H*-adsorption strength. This work highlights a new avenue toward the fabrication of robust non-noble electrocatalysts by constructing in-plane heterojunctions.

19.
Nano Lett ; 21(5): 2191-2198, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33646790

RESUMO

Materials with interfaces often exhibit extraordinary phenomena exemplified by rich physics, such as high-temperature superconductivity and enhanced electronic correlations. However, demonstrations of confined interfaces to date have involved intensive effort and fortuity, and no simple path is consistently available. Here, we report the achievement of interfacial superconductivity in the nonsuperconducting parent compounds AEFe2As2, where AE = Ca, Sr, or Ba, by simple subsequent annealing of the as-grown samples in an atmosphere of As, P, or Sb. Our results indicate that the superconductivity originates from electron transfer at the interface of the hybrid van der Waals heterostructures, consistent with the two-dimensional superconducting transition observed. The observations suggest a common origin of interfaces for the nonbulk superconductivity previously reported in the AEFe2As2 compound family and provide insight for the further exploration of interfacial superconductivity.

20.
Nat Commun ; 12(1): 1121, 2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33602944

RESUMO

Thermoelectric technology converts heat into electricity directly and is a promising source of clean electricity. Commercial thermoelectric modules have relied on Bi2Te3-based compounds because of their unparalleled thermoelectric properties at temperatures associated with low-grade heat (<550 K). However, the scarcity of elemental Te greatly limits the applicability of such modules. Here we report the performance of thermoelectric modules assembled from Bi2Te3-substitute compounds, including p-type MgAgSb and n-type Mg3(Sb,Bi)2, by using a simple, versatile, and thus scalable processing routine. For a temperature difference of ~250 K, whereas a single-stage module displayed a conversion efficiency of ~6.5%, a module using segmented n-type legs displayed a record efficiency of ~7.0% that is comparable to the state-of-the-art Bi2Te3-based thermoelectric modules. Our work demonstrates the feasibility and scalability of high-performance thermoelectric modules based on sustainable elements for recovering low-grade heat.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...