Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38793385

RESUMO

This study investigates how varying cell size affects the mechanical behaviour of photopolymer Triply Periodic Minimal Surfaces (TPMS) under different deformation rates. Diamond, Gyroid, and Primitive TPMS structures with spatially graded cell sizes were tested. Quasi-static experiments measured boundary forces, representing material behaviour, inertia, and deformation mechanisms. Separate studies explored the base material's behaviour and its response to strain rate, revealing a strength increase with rising strain rate. Ten compression tests identified a critical strain rate of 0.7 s-1 for "Grey Pro" material, indicating a shift in failure susceptibility. X-ray tomography, camera recording, and image correlation techniques observed cell connectivity and non-uniform deformation in TPMS structures. Regions exceeding the critical rate fractured earlier. In Primitive structures, stiffness differences caused collapse after densification of smaller cells at lower rates. The study found increasing collapse initiation stress, plateau stress, densification strain, and specific energy absorption with higher deformation rates below the critical rate for all TPMS structures. However, cell-size graded Primitive structures showed a significant reduction in plateau and specific energy absorption at a 500 mm/min rate.

2.
Polymers (Basel) ; 14(3)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35160560

RESUMO

A conventional compound fabric was used to develop a modern, multifunctional material with an auxetic behaviour and a tailored open area for particle filtration. Such material was produced using traditional textile technology and laser cutting, to induce a rotating squares unit geometry. The behaviour was investigated of three different rotating unit cell sizes. The laser slit thickness and the length of the hinges were equal for all three-unit cells. The tensile properties, Poisson's ratio and auxetic behaviour of the tested samples were investigated, especially the influence of longitudinal displacement on the fabric's open area and the filtered particle sizes (average and maximum). Results show that the developed compound fabric possesses an average negative Poisson's ratio of up to -1, depending on the applied auxetic geometry. The larger rotating cell size samples offer a higher average negative Poisson's ratio and a higher breaking strength due to the induced slits. The findings highlight the usefulness of patterned cuts in conventional textile materials to develop advanced auxetic textile materials with tailored geometrical and mechanical properties.

3.
Materials (Basel) ; 15(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35009529

RESUMO

Auxetic structures can be used as protective sacrificial solutions for impact protection with lightweight and excellent energy-dissipation characteristics. A recently published and patented shock-absorbing system, namely, Uniaxial Graded Auxetic Damper (UGAD), proved its efficiency through comprehensive analytical and computational analyses. However, the authors highlighted the necessity for experimental testing of this new damper. Hence, this paper aimed to fabricate the UGAD using a cost-effective method and determine its load-deformation properties and energy-absorption potential experimentally and computationally. The geometry of the UGAD, fabrication technique, experimental setup, and computational model are presented. A series of dog-bone samples were tested to determine the exact properties of aluminium alloy (AW-5754, T-111). A simplified (elastic, plastic with strain hardening) material model was proposed and validated for use in future computational simulations. Results showed that deformation pattern, progressive collapse, and force-displacement relationships of the manufactured UGAD are in excellent agreement with the computational predictions, thus validating the proposed computational and material models.

4.
Materials (Basel) ; 13(17)2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32887443

RESUMO

This study is concerned with the development of a new unidirectional cellular (UniPore) copper structure with multiple concentric pipe layers. The investigated UniPore structures were grouped into three main types, each having a different number of pipes (3, 4, and 5 pipes per transversal cross-section) and different pore arrangements. The specimens were fabricated by explosive compaction to achieve tightly compacted structures with a quasi-constant cross-section along the length of the specimens. The bonding between copper pipes was observed by a metallographic investigation, which showed that the pipes and bars were compressed tightly without voids. However, they were not welded together. The mechanical properties were determined by quasi-static compressive testing, where the typical behaviour for cellular materials was noted. The study showed that porosity significantly influences the mechanical properties, even more so than the arrangement of the pipes.

5.
Materials (Basel) ; 13(8)2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32326258

RESUMO

The study presents the results of an experimental and computational study of the high-velocity impact of low-density aluminum foam into a rigid wall. It is shown that the aluminum foam samples deformed before hitting the rigid wall because of the high inertial forces during the acceleration. During the impact, the samples deformed only in the region contacting the rigid wall due to the high impact velocity; the inertial effects dominated the deformation process. However, the engineering stress-strain relationship retains its typical plateau shape until the densification strain. The experimental tests were successfully reproduced with parametric computer simulations using the LS-DYNA explicit finite element code. A unique computational lattice-type model was used, which can reproduce the randomness of the irregular, open-cell structure of aluminum foams. Parametric computer simulations of twenty different aluminum foam sample models with randomly generated irregular lattice structures were carried out at different acceleration levels to obtain representative statistical results. The high strain-rate sensitivity of low-density aluminum foam was also observed. A comparison of experimental and computational results during aluminum foam sample impact shows very similar deformation behavior. The computational model correctly represents the real impact conditions of low-density aluminum foam and can be recommended for use in similar high-velocity impact investigations.

6.
Materials (Basel) ; 12(24)2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31818012

RESUMO

Closed-cell aluminium foams were fabricated and characterised at different strain rates. Quasi-static and high strain rate experimental compression testing was performed using a universal servo-hydraulic testing machine and powder gun. The experimental results show a large influence of strain rate hardening on mechanical properties, which contributes to significant quasi-linear enhancement of energy absorption capabilities at high strain rates. The results of experimental testing were further used for the determination of critical deformation velocities and validation of the proposed computational model. A simple computational model with homogenised crushable foam material model shows good correlation between the experimental and computational results at analysed strain rates. The computational model offers efficient (simple, fast and accurate) analysis of high strain rate deformation behaviour of a closed-cell aluminium foam at different loading velocities.

7.
Polymers (Basel) ; 11(6)2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-31212820

RESUMO

This paper reports the auxetic behavior of modified conventional non-woven fabric. The auxetic behavior of fabric was achieved by forming rotating square unit geometry with a highly ordered pattern of slits by laser cutting. Two commercial needle-punched non-woven fabric used as lining and the reinforcement fabric for the footwear industry were investigated. The influence of two rotating square unit sizes was analyzed for each fabric. The original and modified fabric samples were subjected to quasi-static tensile load by using the Tinius Olsen testing machine to observe the in-plane mechanical properties and deformation behavior of tested samples. The tests were recorded with a full high-definition (HD) digital camera and the video recognition technique was applied to determine the Poisson's ratio evolution during testing. The results show that the modified samples exhibit a much lower breaking force due to induced slits, which in turn limits the application of such modified fabric to low tensile loads. The samples with smaller rotating cell sizes exhibit the highest negative Poisson's ratio during tensile loading through the entire longitudinal strain range until rupture. Non-woven fabric with equal distribution and orientation of fibers in both directions offer better auxetic response with a smaller out-of-plane rotation of rotating unit cells. The out-of-plane rotation of unit cells in non-homogenous samples is higher in machine direction.

8.
Materials (Basel) ; 12(7)2019 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-30986957

RESUMO

The mechanical properties of Advanced Pore Morphology (APM) foam elements depend strongly upon their internal porous and external structural geometry. This paper reports on a detailed investigation of external (e.g. shape and size) and internal (e.g. distribution, size, number of pores) geometry and porosity changes of APM foam elements, during compressive loading by means of the ex-situ micro-Computed Tomography, and advanced digital image analysis and recognition. The results show that the porosity of APM foam elements decreases by only 25% at the engineering strain of 70% due to an increase of the number of pores at high stages of compressive deformation. The APM foam elements also exhibit a positive macroscopic Poisson's ratio of υ = 0.2, which is uncharacteristic for cellular structures.

9.
Materials (Basel) ; 11(2)2018 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-29373495

RESUMO

This paper addresses the problem of reconstructing realistic, irregular pore geometries of lotus-type porous iron for computer models that allow for simple porosity and pore size variation in computational characterization of their mechanical properties. The presented methodology uses image-recognition algorithms for the statistical analysis of pore morphology in real material specimens, from which a unique fingerprint of pore morphology at a certain porosity level is derived. The representative morphology parameter is introduced and used for the indirect reconstruction of realistic and statistically representative pore morphologies, which can be used for the generation of computational models with an arbitrary porosity. Such models were subjected to parametric computer simulations to characterize the dependence of engineering elastic modulus on the porosity of lotus-type porous iron. The computational results are in excellent agreement with experimental observations, which confirms the suitability of the presented methodology of indirect pore geometry reconstruction for computational simulations of similar porous materials.

10.
Med Eng Phys ; 36(12): 1684-92, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25456399

RESUMO

The prediction accuracy of computational simulations of various biomechanical problems of human bones depends on proper modelling of the problem geometry and boundary conditions but it is also essentially dependent on proper description of the mechanical properties of the all constitutive elements. As the human mandibular bone is a very important load-carrying element in biomechanics, the main aim of this research was to develop an innovative, not yet described in literature, spatial and bone density-dependent orthotropic material model of the human mandibular bone for use in the computational simulations. We compared it with the most used constitutive material models in the computational simulations of the human mandibular bone behaviour with inserted dental implant. The results show that the von Mises equivalent stress distribution values in the bone density-dependent orthotropic model are higher in comparison with other models but the highest are on the top of the alveolar ridge and higher in the lingual than in the buccal part of the lower jaw.


Assuntos
Densidade Óssea/fisiologia , Simulação por Computador , Implantes Dentários , Mandíbula/fisiologia , Modelos Biológicos , Fenômenos Biomecânicos , Módulo de Elasticidade , Análise de Elementos Finitos , Humanos , Mandíbula/cirurgia , Resistência ao Cisalhamento , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...