Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Compr Rev Food Sci Food Saf ; 23(3): e13352, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38634188

RESUMO

A-type proanthocyanidins (PAs) are a subgroup of PAs that differ from B-type PAs by the presence of an ether bond between two consecutive constitutive units. This additional C-O-C bond gives them a more stable and hydrophobic character. They are of increasing interest due to their potential multiple nutritional effects with low toxicity in food processing and supplement development. They have been identified in several plants. However, the role of A-type PAs, especially their complex polymeric form (degree of polymerization and linkage), has not been specifically discussed and explored. Therefore, recent advances in the physicochemical and structural changes of A-type PAs and their functional properties during extraction, processing, and storing are evaluated. In addition, discussions on the sources, structures, bioactivities, potential applications in the food industry, and future research trends of their derivatives are highlighted. Litchis, cranberries, avocados, and persimmons are all favorable plant sources. Α-type PAs contribute directly or indirectly to human nutrition via the regulation of different degrees of polymerization and bonding types. Thermal processing could have a negative impact on the amount and structure of A-type PAs in the food matrix. More attention should be focused on nonthermal technologies that could better preserve their architecture and structure. The diversity and complexity of these compounds, as well as the difficulty in isolating and purifying natural A-type PAs, remain obstacles to their further applications. A-type PAs have received widespread acceptance and attention in the food industry but have not yet achieved their maximum potential for the future of food. Further research and development are therefore needed.


Assuntos
Proantocianidinas , Humanos , Proantocianidinas/análise , Proantocianidinas/química , Frutas/química , Polimerização , Plantas , Estado Nutricional
2.
Food Res Int ; 173(Pt 2): 113381, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803719

RESUMO

Amadori compounds (ACs), the first stable products of Maillard reaction, are detected in various products of fruits and vegetables, and show an antioxidant activity which can be related to beneficial effects in human health. In order to optimize the nutritional quality of a multi-ingredient tomato sauce (tomato puree - onion - olive oil - dried pepper), the fate of ACs during processing (drying, heating) and gastrointestinal digestion of a model meal was assessed as well as that of other microconstituents, i.e. carotenoids, phenolic compounds and capsaicinoids. The drying at 50 °C of fresh pepper induced the formation and accumulation of ACs after 6 days. During the heat treatment by microwave of multi-ingredient tomato sauce, Maillard reaction occurs in presence of dried pepper and the content in ACs in the tomato-based sauces increased (+33% to + 53%) depending of quantities of dried pepper added. The bioaccessibility of total ACs was 24-31% in duodenal phase and 18-22% in jejunal phase. Individual ACs have shown variable bioaccessibility, e.g. very high for Fru-Arg (50.8% to 71.3%), and very low for Fru-Met (1.8% to 2.2%). The kinetic monitoring of ACs in digestion medium showed that ACs are not stable (-46% in gastric phase, -49 % in intestinal phase) which indicated their potential degradation in the digestive tract. The presence of ACs in the multi-ingredients tomato sauces had no effect on the content of the other bioactive compounds monitored in the study and even promoted the bioaccessibility of total lycopene (+30%) but decreased the bioaccessibility of total phenolic compounds.


Assuntos
Solanum lycopersicum , Humanos , Manipulação de Alimentos , Carotenoides/análise , Licopeno , Fenóis/análise , Digestão
3.
Crit Rev Food Sci Nutr ; : 1-39, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37584238

RESUMO

Proanthocyanidins (PAs) are a class of polymers composed of flavan-3-ol units that have a variety of bioactivities, and could be applied as natural biologics in food, pharmaceuticals, and cosmetics. PAs are widely found in fruit and vegetables (F&Vegs) and are generally extracted from their flesh and peel. To reduce the cost of extraction and increase the number of commercially viable sources of PAs, it is possible to exploit the by-products of plants. Leaves are major by-products of agricultural production of F&Vegs, and although their share has not been accurately quantified. They make up no less than 20% of the plant and leaves might be an interesting resource at different stages during production and processing. The specific structural PAs in the leaves of various plants are easily overlooked and are notably characterized by their stable content and degree of polymerization. This review examines the existing data on the effects of various factors (e.g. processing conditions, and environment, climate, species, and maturity) on the content and structure of leaf PAs, and highlights their bioactivity (e.g. antioxidant, anti-inflammatory, antibacterial, anticancer, and anti-obesity activity), as well as their interactions with gut microbiota and other biomolecules (e.g. polysaccharides and proteins). Future research is also needed to focus on their precise extraction, bioactivity of high-polymer native or modified PAs and better application type.


The Leaf proanthocyanidins (LPAs) are mostly oligomeric procyanidins, with a small proportion of leaves containing A-type procyanidins.Foliage is a sustainable source of PAs.LPAs are a potential source of valuable bioactive compounds.The content, structure, extraction and identification and bio-activity of LPAs are discussed.Processing improvement is beneficial to enhance the production of LPA.

4.
Compr Rev Food Sci Food Saf ; 22(2): 1030-1057, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36579838

RESUMO

The problems with plastic materials and the good film-forming properties of polysaccharides motivated research in the development of polysaccharide-based films. In the last 5 years, there has been an explosion of publications on using green solvents, including ionic liquids (ILs), and deep eutectic solvents (DESs) as candidates to substitute the conventional solvents/plasticizers for preparations of desired polysaccharide-based films. This review summarizes related properties and recovery of ILs and DESs, a series of green preparation strategies (including pretreatment solvents/reaction media, ILs/DESs as components, extraction solvents of bioactive compounds added into films), and inherent properties of polysaccharide-based films with/without ILs and DESs. Major reported advantages of these new solvents are high dissolving capacity of certain ILs/DESs for polysaccharides (i.e., up to 30 wt% for cellulose) and better plasticizing ability than traditional plasticizers. In addition, they frequently display intrinsic antioxidant and antibacterial activities that facilitate ILs/DESs applications in the processing of polysaccharide-based films (especially active food packaging films). ILs/DESs in the film could also be further recycled by water or ethanol/methanol treatment followed by drying/evaporation. One particularly promising approach is to use bioactive cholinium-based ILs and DESs with good safety and plasticizing ability to improve the functional properties of prepared films. Whole extracts by ILs/DESs from various byproducts can also be directly used in films without separation/polishing of compounds from the extracting agents. Scaling-up, including costs and environmental footprint, as well as the safety and applications in real foods of polysaccharide-based film with ILs/DESs (extracts) deserves more studies.


Assuntos
Líquidos Iônicos , Solventes , Solventes Eutéticos Profundos , Plastificantes , Polissacarídeos
5.
Food Chem ; 390: 133088, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35537239

RESUMO

This study was designed to have the absolute definition of 'one apple to one puree', which gave a first insight into the impacts of fruit inter-variability (between varieties) and intra-variability (between individual fruits) on the quality of processed purees. Both the inter-variability of apple varieties and the intra-variability of single apples induced intensive changes of appearance, chemical and textural properties of their corresponding microwave-cooked purees. The intra-variability of cooked purees was different according to apple cultivars. Some strong correlations of visible-near infrared (VIS-NIR) spectra were observed between fresh and cooked apples, particularly in the regions 665-685 nm and 1125-1400 nm. These correlations allowed then the indirect predictions of puree color (a* and b*, RPD ≧ 2.1), viscosity (RPD ≧ 2.3), soluble solids content (SSC, RPD = 2.1), titratable acidity (RPD = 2.8), and pH (RPD = 2.5) from the non-destructive acquired VIS-NIR spectra of raw apples.


Assuntos
Malus , Culinária , Frutas/química , Malus/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Viscosidade
6.
Carbohydr Polym ; 281: 119086, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35074113

RESUMO

During processing of plant-based foods, cell wall polysaccharides and polyphenols, such as procyanidins, interact extensively, thereby affecting their physicochemical properties along with their potential health effects. Although hemicelluloses are second only to pectins in affinity for procyanidins in cell walls, a detailed study of their interactions lacks. We investigated the interactions between representative xylose-containing water-soluble hemicelluloses and procyanidins. Turbidity, ITC and DLS were used to determine the relative affinities, and theoretical calculations further ascertained the interactions mechanisms. Xyloglucan and xylan exhibited respectively the strongest and weakest interactions with procyanidins. The different arabinoxylans interacted with procyanidins in a similar strength, intermediate between xyloglucans and xylans. Therefore, the strength of the interaction depended on the structure itself rather than on some incidental properties, e.g., viscosity and molar mass. The arabinose side-chain of arabinoxylan did not inhibit interactions. The computational investigation corroborated the experimental results in that the region of interaction between xyloglucan and procyanidins was significantly wider than that of other hemicelluloses.


Assuntos
Proantocianidinas , Parede Celular/química , Pectinas/química , Polissacarídeos/química , Proantocianidinas/química , Xilanos/química , Xilose/análise
7.
Compr Rev Food Sci Food Saf ; 20(5): 4841-4880, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34288366

RESUMO

Flavanols, a subgroup of polyphenols, are secondary metabolites with antioxidant properties naturally produced in various plants (e.g., green tea, cocoa, grapes, and apples); they are a major polyphenol class in human foods and beverages, and have recognized effect on maintaining human health. Therefore, it is necessary to evaluate their changes (i.e., oxidation, polymerization, degradation, and epimerization) during various physical processing (i.e., heating, drying, mechanical shearing, high-pressure, ultrasound, and radiation) to improve the nutritional value of food products. However, the roles of flavanols, in particular for their polymerized forms, are often underestimated, for a large part because of analytical challenges: they are difficult to extract quantitatively, and their quantification demands chemical reactions. This review examines the existing data on the effects of different physical processing techniques on the content of flavanols and highlights the changes in epimerization and degree of polymerization, as well as some of the latest acidolysis methods for proanthocyanidin characterization and quantification. More and more evidence show that physical processing can affect content but also modify the structure of flavanols by promoting a series of internal reactions. The most important reactivity of flavanols in processing includes oxidative coupling and rearrangements, chain cleavage, structural rearrangements (e.g., polymerization, degradation, and epimerization), and addition to other macromolecules, that is, proteins and polysaccharides. Some acidolysis methods for the analysis of polymeric proanthocyanidins have been updated, which has contributed to complete analysis of proanthocyanidin structures in particular regarding their proportion of A-type proanthocyanidins and their degree of polymerization in various plants. However, future research is also needed to better extract and characterize high-polymer proanthocyanidins, whether in their native or modified forms.


Assuntos
Cacau , Polifenóis , Antioxidantes , Manipulação de Alimentos , Humanos , Chá
8.
Data Brief ; 36: 107029, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33948457

RESUMO

The data presented here are related to the research paper entitled "Multiscale NMR analysis of the degradation of apple structure due to thermal treatment" whose aim was to investigate the critical temperature at which the cell membranes of a Golden Delicious apple is highly damaged. Apple sticks were analyzed raw and cooked at 45, 50, 53, 60 °C and 70 °C. The firmness data refers to the puncture tests that were done using a Ta-Plus texturometer. The nuclear magnetic resonance (NMR) relaxometry and imaging data were both acquired with a 9.4 T 400WB instrument. For these three raw data collections, analysis results are also provided. These data are complementary as they cover the different scales from molecular to nearly the whole food system to enlighten the process of membrane degradation during thermal processing of apple. Our NMR data could be reused to optimize inversion algorithms dealing with ill-posed inverse problems. Both firmness and NMR data could be added to databases on food structure studies, either in physico-chemical data handbooks or review studies. Finally, these data could also be reused for the optimization of food thermal processing control.

9.
Carbohydr Polym ; 262: 117935, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33838812

RESUMO

The contribution of ATR-FTIR spectroscopy to study cell wall polysaccharides (CWPs) was carefully investigated. The region 1800-800 cm-1 was exploited using principal component analysis and hierarchical clustering on a large range of different powders of CWPs based on their precise chemical characterization. Relevant wavenumbers were highlighted for each CWP: 1035 cm-1 was attributed to xylose-containing hemicelluloses, 1065 and 807 cm-1 to mannose-containing hemicelluloses, 988 cm-1 to cellulose, 1740 and 1600 cm-1 to homogalacturonans according to the degree of methylation. Some band positions were affected by macromolecular arrangements (especially hemicellulose-cellulose interactions). However, as arabinan and galactan did not reveal distinctive absorption bands, ATR-FTIR spectroscopy did not allow the discrimination of cell walls differing by the abundance of these polysaccharides, e.g., those extracted from apple and beet. Therefore, the application of ATR-FTIR could remain sometimes limited due to the complexity of overlapping spectra bands and vibrational coupling from the large diversity of CWP chemical bonds.


Assuntos
Parede Celular/química , Plantas/química , Polissacarídeos/química , Celulose/química , Galactanos/química , Monossacarídeos/química , Pectinas/química , Análise de Componente Principal/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
10.
Food Chem ; 355: 129636, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33799241

RESUMO

The potential of MIRS was investigated to: i) differentiate cooked purees issued from different apples and process conditions, and ii) predict the puree quality characteristics from the spectra of homogenized raw apples. Partial least squares (PLS) regression was tested both, on the real spectra of cooked purees and their reconstructed spectra calculated from the spectra of homogenized raw apples by direct standardization. The cooked purees were well-classified according to apple thinning practices and cold storage durations, and to different heating and grinding conditions. PLS models using the spectra of homogenized raw apples can anticipate the titratable acidity (the residual predictive deviation (RPD) = 2.9), soluble solid content (RPD = 2.8), particle averaged size (RPD = 2.6) and viscosity (RPD ≥ 2.5) of cooked purees. MIR technique can provide sustainable evaluations of puree quality, and even forecast texture and taste of purees based on the prior information of raw materials.


Assuntos
Manipulação de Alimentos , Malus/química , Espectrofotometria Infravermelho , Culinária , Frutas/química , Química Verde , Análise dos Mínimos Quadrados , Paladar , Viscosidade
11.
Food Chem ; 339: 128096, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32979713

RESUMO

The changes of texture and cell wall characteristics of apricot were investigated in ten clones at two maturity stages. Fruit firmness, cell wall composition and enzyme activity of three apricot flesh zones were analysed. The AIS (alcohol-insoluble solids) were characterised by high amounts of uronic acid (179-300 mg g-1 AIS) and relatively high amounts of cellulosic glucose (118-214 mg g-1 AIS). The methylesterification degree varied significantly among the different clones ranging from 58 to 97 in Ab 5 and Mans 15 respectively. Conversely to zones firmness, enzymatic activity was higher in pistil followed by equatorial and peduncle zones. The ripening effect has been observed in firmness evolution according to enzymatic activity. This correlation allowed a classification of clones depending on softening. Among studied clones, Ab 5, Marouch 16, Mans 15 and Cg 2 were less influenced by softening and have the advantage of a technological valorisation for the processing industry.


Assuntos
Parede Celular/química , Frutas/citologia , Prunus armeniaca/química , Prunus armeniaca/citologia , Açúcares/análise , Hidrolases de Éster Carboxílico/metabolismo , Frutas/química , Humanos , Pectinas/metabolismo , Proteínas de Plantas/metabolismo , Prunus armeniaca/crescimento & desenvolvimento , Açúcares/química , beta-Galactosidase/metabolismo
12.
Compr Rev Food Sci Food Saf ; 19(6): 3574-3617, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33337054

RESUMO

Cell wall polysaccharides (CPSs) and polyphenols are major constituents of the dietary fiber complex in plant-based foods. Their digestion (by gut microbiota) and bioefficacy depend not only on their structure and quantity, but also on their intermolecular interactions. The composition and structure of these compounds vary with their dietary source (i.e., fruit or vegetable of origin) and can be further modified by food processing. Various components and structures of CPSs and polyphenols have been observed to demonstrate common and characteristic behaviors during interactions. However, at a fundamental level, the mechanisms that ultimately drive these interactions are still not fully understood. This review summarizes the current state of knowledge on the internal factors that influence CPS-polyphenol interactions, describes the different ways in which these interactions can be mediated by molecular composition or structure, and introduces the main methods for the analysis of these interactions, as well as the mechanisms involved. Furthermore, a comprehensive overview is provided of recent key findings in the area of CPS-polyphenol interactions. It is becoming clear that these interactions are shaped by a multitude of factors, the most important of which are the physicochemical properties of the partners: their morphology (surface area and porosity/pore shape), chemical composition (sugar ratio, solubility, and non-sugar components), and molecular architecture (molecular weight, degree of esterification, functional groups, and conformation). An improved understanding of the molecular mechanisms that drive interactions between CPSs and polyphenols may allow us to better establish a bridge between food processing and the bioavailability of colonic fermentation products from CPSs and antioxidant polyphenols, which could ultimately lead to the development of new guidelines for the design of healthier and more nutritious foods.


Assuntos
Parede Celular/química , Polifenóis/química , Polissacarídeos/química , Fibras na Dieta , Manipulação de Alimentos , Estrutura Molecular , Células Vegetais/química
13.
J Agric Food Chem ; 68(33): 8900-8906, 2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32706965

RESUMO

Histochemical staining with 4-dimethylaminocinnamaldehyde (DMACA), light microscopy, and transmission electron microscopy (TEM) were applied to characterize procyanidin localization at ripe and overripe stages in perry pear flesh (cv. 'De Cloche'). Pear flesh contained stone cell clusters surrounded by very large parenchyma cells. DMACA staining showed procyanidins mainly located in parenchyma cells from the fruit mesocarp. Under light microscopy and TEM, procyanidins appeared in the vacuole of parenchyma cells as uniformly stained granules, probably tannosomes. They were differently dispersed in ripe and overripe perry pears, as the granules remained free inside the vacuole in ripe pears and mostly attached to the tonoplast in overripe pears.


Assuntos
Biflavonoides/metabolismo , Catequina/metabolismo , Frutas/ultraestrutura , Proantocianidinas/metabolismo , Pyrus/metabolismo , Transporte Biológico , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Microscopia Eletrônica de Transmissão , Pyrus/química , Pyrus/ultraestrutura , Vacúolos/metabolismo , Vacúolos/ultraestrutura
14.
Food Chem ; 330: 127357, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32569943

RESUMO

Attenuated total reflectance Fourier transform spectroscopy (ATR-FTIR) was applied on fresh (NF), freeze-dried (FD) and cell wall materials (AIS) of raw and processed apples. These samples prepared from 36 apple sets and the corresponding 72 purees, issued from different varieties, agricultural practices, storage periods and processing conditions, were used to build models including exploratory analysis, supervised classification and multivariate calibration. Fresh and freeze-dried samples presented similar fingerprint spectral variations due to processing. ATR-FTIR directly on fresh purees satisfactorily predicted textural properties such as particle average size and volume (RPD > 3.0), while freeze-drying improved assessment of chemical (RPD > 3.2) and rheological (RPD > 3.1) parameters using partial least-squares regression. The assessment of texture and macrocomponents of purees can be obtained with a limited sample preparation. For research applications because of a need of sample preparation, changes of cell wall composition during fruit processing could be assessed in relationship with pectin degradation.


Assuntos
Parede Celular/química , Indústria de Processamento de Alimentos/métodos , Malus/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Calibragem , Análise de Alimentos/métodos , Análise de Alimentos/estatística & dados numéricos , Liofilização , Frutas/química , Análise dos Mínimos Quadrados , Malus/citologia , Tamanho da Partícula , Reologia , Espectroscopia de Infravermelho com Transformada de Fourier/estatística & dados numéricos
15.
Food Funct ; 11(6): 5122-5132, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32432278

RESUMO

Onions as an interesting ingredient have been proved to promote Z-isomerization of lycopene and increase bioaccessibility of total-lycopene. Phytoene (PT) and phytofluene (PTF), the precursors of lycopene, are colorless carotenes, which are attracting much attention and are also abundant in tomatoes. Therefore, onions might also affect the distribution and bioaccessibility of PT and PTF isomers during heating tomato (hot-break and cold-break purees)-onion-extra virgin olive oil (EVOO) sauces. The addition of onions (or diallyl disulfide present in onions) into tomato purees did not cause degradation of PT or PTF; however it favored E/Z-isomerization of PT and PTF by reducing the proportions of their natural Z-isomers (Z-15-PT and Z2,3-PTF) and decreased the bioaccessibility of total-PT and total-PTF. Simultaneously, a complex picture was obtained for the effect of onions on the bioaccessibility of individual PT and PTF isomers, depending on the precise isomer. Bioaccessibility of PT and PTF isomers in tomato-based sauces decreased in the order: 15-Z-PT > all-E-PT; Z2,3-PTF > all-E-PTF > Z4 or Z5-PTF; total-PT > total-PTF. E-isomerization of PT and PTF enhanced by onions during heating tomato-onion purees decreased their bioaccessibility.


Assuntos
Carotenoides/química , Carotenoides/farmacocinética , Alimentos , Cebolas , Solanum lycopersicum , Compostos Alílicos , Disponibilidade Biológica , Culinária , Dissulfetos , Temperatura Alta , Isomerismo , Licopeno/química , Licopeno/farmacocinética , Azeite de Oliva
16.
Acta Crystallogr E Crystallogr Commun ; 76(Pt 4): 467-472, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32280485

RESUMO

The title compound, C15H14N2O2, consists of pyrrole and benzodiazepine units linked to a propargyl moiety, where the pyrrole and diazepine rings adopt half-chair and boat conformations, respectively. The absolute configuration was assigned on the the basis of l-proline, which was used in the synthesis of benzodiazepine. In the crystal, weak C-HBnz⋯ODiazp and C-HProprg⋯ODiazp (Bnz = benzene, Diazp = diazepine and Proprg = proparg-yl) hydrogen bonds link the mol-ecules into two-dimensional networks parallel to the bc plane, enclosing R 4 4(28) ring motifs, with the networks forming oblique stacks along the a-axis direction. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (49.8%), H⋯C/C⋯H (25.7%) and H⋯O/O⋯H (20.1%) inter-actions. Hydrogen bonding and van der Waals inter-actions are the dominant inter-actions in the crystal packing. Computational chemistry indicates that in the crystal, C-H⋯O hydrogen-bond energies are 38.8 (for C-HBnz⋯ODiazp) and 27.1 (for C-HProprg⋯ODiazp) kJ mol-1. Density functional theory (DFT) optimized structures at the B3LYP/6-311 G(d,p) level are compared with the experimentally determined mol-ecular structure in the solid state. The HOMO-LUMO behaviour was elucidated to determine the energy gap.

18.
Carbohydr Polym ; 230: 115644, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31887907

RESUMO

Given the high prevalence of arabinan side chains in pectic polysaccharides, this work aims to unveil the impact of their structural diversity on pectic polysaccharides-polyphenol interactions. To assess the effect of arabinan branching degree, sugar beet arabinans (branched and debranched) were used and compared to the well-known structure of apple arabinan and other pectic polysaccharides. Furthermore, arabinans contribution to pectic polysaccharides/polyphenol interactions was assessed. The interactions were evaluated using chlorogenic acid, phloridzin and procyanidins (degree of polymerization of 9). Linear arabinans had 8-fold and 2-fold higher retention for chlorogenic acid and phloridzin, respectively, than branched arabinans. This trend was also observed for the interaction of arabinans with procyanidins. However, arabinans with covalently linked polyphenols showed lower interactions. The interactions involved between arabinans and polyphenols explained 1-28 % of the interactions of pectic polysaccharides, allowing us to conclude that the whole polysaccharide structure is more relevant for polyphenol interactions than each part.

19.
Food Chem ; 310: 125944, 2020 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-31835215

RESUMO

The potential of NIRS was investigated on both apples and purees to (i) examine factors involving quality variability (variety, agricultural practice, cold storage, puree mechanical refining level) and (ii) establish the link between quality traits before and after processing in order to predict the quality characteristics of purees from spectral information of raw apples. Apples and purees were well-classified at over 82% and 88% according to varieties and storage times respectively. The PLS models showed a good ability to estimate puree characteristics from spectra acquired on corresponding apples such as viscosity (R2 > 0.82), cell wall content (R2 > 0.81) and also dry matter (R2 > 0.83), soluble solids content (R2 > 0.80) and titratable acidity (R2 > 0.80). NIR technique should be a useful tool for industry insofar as it can give a reliable assessment of texture and taste of the final products based on the non-destructive fresh materials evaluation.


Assuntos
Análise de Alimentos/métodos , Malus/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Análise de Alimentos/estatística & dados numéricos , Qualidade dos Alimentos , Armazenamento de Alimentos , Frutas/química , Espectroscopia de Luz Próxima ao Infravermelho/estatística & dados numéricos , Paladar , Viscosidade
20.
Acta Crystallogr E Crystallogr Commun ; 75(Pt 9): 1372-1378, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31523469

RESUMO

The title compound, C14H15BrClNO4, consists of a 5-bromo-indoline-2,3-dione unit linked to a 1-{2-[2-(2-chloro-eth-oxy)eth-oxy]eth-yl} moiety. In the crystal, a series of C-H⋯O hydrogen bonds link the molecules to form a supramolecular three-dimensional structure, enclosing R 2 2(8), R 2 2(12), R 2 2(18) and R 2 2(22) ring motifs. π-π contacts between the five-membered dione rings may further stabilize the structure, with a centroid-centroid distance of 3.899 (2) Å. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (28.1%), H⋯O/O⋯H (23.5%), H⋯Br/Br⋯H (13.8%), H⋯Cl/Cl⋯H (13.0%) and H⋯C/C⋯H (10.2%) inter-actions. Hydrogen bonding and van der Waals inter-actions are the dominant inter-actions in the crystal packing. Density functional theory (DFT) optimized structures at the B3LYP/6-311G(d,p) level are compared with the experimentally determined mol-ecular structure in the solid state. The HOMO-LUMO behaviour was elucidated to determine the energy gap. The chloro-eth-oxy-ethoxyethyl side chain atoms are disordered over two sets of sites with an occupancy ratio of 0.665 (8):0.335 (6).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...