Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36501798

RESUMO

Crop productivity is highly dependent on the availability of soluble nitrogen (N), e.g. nitrate, in soil. When N levels are low, fertilisers are applied to replenish the soil's reserves. Typically the timing of these applications is based on paper-based guidance and sensor-based measurements of canopy greenness, which provides an indirect measure of soil N status. However this approach often means that N fertiliser is applied inappropriately or too late, resulting in excess N being lost to the environment, or too little N to meet crop demand. To promote greater N use efficiency and improve agricultural sustainability, we developed an Internet of Things (IoT) approach for the real-time measurement of soil nitrate levels using ion-selective membrane sensors in combination with digital soil moisture probes. The node incorporates state-of-the-art IoT connectivity using a LoRaWAN transceiver. The sensing platform can transfer real-time data via a cloud-connected gateway for processing and storage. In summary, we present a validated soil sensor system for real-time monitoring of soil nitrate concentrations, which can support fertiliser management decisions, improve N use efficiency and reduce N losses to the environment.


Assuntos
Nitratos , Solo , Eletrodos Seletivos de Íons , Agricultura/métodos , Fertilizantes/análise
2.
Biosens Bioelectron ; 102: 49-56, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29121559

RESUMO

Access to safe drinking water is a human right, crucial to combat inequalities, reduce poverty and allow sustainable development. In many areas of the world, however, this right is not guaranteed, in part because of the lack of easily deployable diagnostic tools. Low-cost and simple methods to test water supplies onsite can protect vulnerable communities from the impact of contaminants in drinking water. Ideally such devices would also be easy to dispose of so as to leave no trace, or have a detrimental effect on the environment. To this aim, we here report the first paper microbial fuel cell (pMFC) fabricated by screen-printing biodegradable carbon-based electrodes onto a single sheet of paper, and demonstrate its use as a shock sensor for bioactive compounds (e.g. formaldehyde) in water. We also show a simple route to enhance the sensor performance by folding back-to-back two pMFCs electrically connected in parallel. This promising proof of concept work can lead to a revolutionizing way of testing water at point of use, which is not only green, easy-to-operate and rapid, but is also affordable to all.


Assuntos
Fontes de Energia Bioelétrica , Técnicas Biossensoriais/instrumentação , Formaldeído/análise , Papel , Poluentes Químicos da Água/análise , Fontes de Energia Bioelétrica/microbiologia , Carbono/química , Eletrodos , Desenho de Equipamento , Água/análise , Qualidade da Água
3.
Angew Chem Int Ed Engl ; 56(27): 7774-7778, 2017 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-28489268

RESUMO

Self-assembled redox protein nanowires have been exploited as efficient electron shuttles for an oxygen-tolerant hydrogenase. An intra/inter-protein electron transfer chain has been achieved between the iron-sulfur centers of rubredoxin and the FeS cluster of [NiFe] hydrogenases. [NiFe] Hydrogenases entrapped in the intricated matrix of metalloprotein nanowires achieve a stable, mediated bioelectrocatalytic oxidation of H2 at low-overpotential.


Assuntos
Hidrogenase/química , Nanofios/química , Oxigênio/química , Domínio Catalítico , Técnicas Eletroquímicas , Eletrodos , Transporte de Elétrons , Hidrogênio/química , Hidrogenase/metabolismo , Mathanococcus/metabolismo , Oxirredução , Oxigênio/metabolismo , Podospora/química , Podospora/metabolismo , Rubredoxinas/química , Rubredoxinas/metabolismo
4.
Nat Chem ; 9(2): 157-163, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28282052

RESUMO

Engineering bioelectronic components and set-ups that mimic natural systems is extremely challenging. Here we report the design of a protein-only redox film inspired by the architecture of bacterial electroactive biofilms. The nanowire scaffold is formed using a chimeric protein that results from the attachment of a prion domain to a rubredoxin (Rd) that acts as an electron carrier. The prion domain self-assembles into stable fibres and provides a suitable arrangement of redox metal centres in Rd to permit electron transport. This results in highly organized films, able to transport electrons over several micrometres through a network of bionanowires. We demonstrate that our bionanowires can be used as electron-transfer mediators to build a bioelectrode for the electrocatalytic oxygen reduction by laccase. This approach opens opportunities for the engineering of protein-only electron mediators (with tunable redox potentials and optimized interactions with enzymes) and applications in the field of protein-only bioelectrodes.


Assuntos
Metaloproteínas/química , Nanofios/química , Príons/química , Rubredoxinas/química , Catálise , Técnicas Eletroquímicas , Eletrodos , Transporte de Elétrons , Lacase/química , Lacase/metabolismo , Mathanococcus/metabolismo , Microscopia de Força Atômica , Oxirredução
5.
Langmuir ; 28(20): 7904-13, 2012 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-22524560

RESUMO

Biofilms of the electroactive bacterium Geobacter sulfurreducens were induced to grow on graphite-rod electrodes under a potential of 0 V (vs Ag/AgCl) in the presence of acetate as an electron donor. Increased anodic currents for bioelectrocatalytic oxidation of acetate were obtained when the electrodes were incubated for longer periods with periodic electron-donor feeding. The maximum current density for acetate oxidation increased 2.8-fold, and the biofilm thickness increased by 4.25-fold, over a time period of 83-147 h. Cyclic voltammetry in the presence of acetate supports a model of heterogeneous electron transfer, one electron at time, from biofilm to electrode through a dominant redox species centered at -0.41 V vs Ag/AgCl. Voltammetry performed under nonturnover conditions provided an estimate of the surface coverage of the redox species of 25 nmol/cm(2). This value was used to estimate a redox species concentration of 7.3 mM within the 34-µm-thick biofilm and a charge-transport diffusion coefficient of 3.6 × 10(-7) cm(2)/s. This value of diffusion coefficient is greater than that observed in traditional thin-film voltammetric studies with redox polymer films containing much higher surface concentrations of redox species and might be associated with proton transport to ensure electroneutrality within the biofilm upon electrolysis.


Assuntos
Biofilmes/crescimento & desenvolvimento , Geobacter/química , Geobacter/fisiologia , Grafite/química , Eletroquímica , Eletrodos , Transporte de Elétrons
6.
Biosens Bioelectron ; 30(1): 294-9, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22005596

RESUMO

Glassy carbon and graphite electrodes modified with films of enzyme and osmium redox polymer, cross linked with poly (ethylene glycol) diglycidyl ether, were used for elaboration of a glucose/O(2) enzymatic fuel cell. The redox polymers [Os(4,4'-dimethoxy-2,2'-bipyridine)(2)(polyvinylimidazole)(10)Cl](+) and [Os(4,4'-dichloro-2,2'-bipyridine)(2)(polyvinylimidazole)(10)Cl](+) were selected to facilitate transfer of electrons from the glucose oxidase (GOx) active site to the T1 Cu site of multicopper oxygenases of Trametes hirsuta laccase (ThLacc) and Myrothecium verrucaria bilirubin oxidase (MvBOD). Maximum power density at pH 5.5 of 3.5 µW cm(-2) at a cell voltage of 0.35 V was obtained for an assembled membrane-less fuel cell based on ThLacc on glassy carbon as cathode, in the presence of 0.1 M glucose, 37 °C, with lower power observed at pH 7.4 and 4.5. Replacement of the ThLacc cathode with that of MvBOD produced 10 µW cm(-2) at 0.25 V under pseudo-physiological conditions. Replacement of glassy carbon with graphite as base electrode material resulted in increased redox polymer loading, leading to an increase in power output to 43 µW cm(-2) at 0.25 V under similar conditions. Improved stabilization of biofilms was achieved through covalent anchoring of enzyme and redox polymer on graphite electrodes, derivatized via electrochemical reduction of the diazonium cation generated in situ from p-phenylenediamine. Enzymatic fuel cells using this approach retained 70% power at 24 h, whereas fuel cells prepared without chemical anchoring to graphite retained only 10% of power over the same interval.


Assuntos
Fontes de Energia Bioelétrica , Carbono/química , Eletrodos , Glucose/química , Lacase/química , Oxigênio/química , Polímeros/química , Enzimas Imobilizadas/química , Desenho de Equipamento , Análise de Falha de Equipamento , Membranas Artificiais , Oxirredução
7.
Chem Commun (Camb) ; 47(43): 11861-3, 2011 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-21975371

RESUMO

Layer-by-layer (LBL) assembly of alternate osmium redox polymers and glucose oxidase, at anode, and laccase, at cathode, using graphite electrodes form a membrane-less glucose/O(2) enzymatic fuel cell providing a power density of 103 µW cm(-2) at pH 5.5.


Assuntos
Glucose Oxidase/metabolismo , Grafite/química , Polímeros/química , Técnicas Eletroquímicas , Eletrodos , Glucose/metabolismo , Concentração de Íons de Hidrogênio , Oxirredução , Oxigênio/metabolismo
8.
Chem Commun (Camb) ; 46(26): 4758-60, 2010 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-20485847

RESUMO

Growth of biofilms of G. sulfurreducens on glassy carbon that yield a bioelectrocatalytic response to acetate oxidation is achieved using a fixed applied potential, with current density for acetate oxidation scaling with applied potential. In contrast biofilms grown under electron acceptor-limiting conditions display redox signals shifted to lower potentials and do not oxidise acetate.


Assuntos
Biofilmes/crescimento & desenvolvimento , Carbono/química , Geobacter/fisiologia , Acetatos/química , Técnicas Eletroquímicas , Eletrodos , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...