Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 90(11): 114709, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31779426

RESUMO

Intense electron beams striking a high-atomic number target produce high-output pulsed photon fluxes for flash x-ray experiments. Without an external guide field, such beams are subject to the dynamics of high-current electron beam propagation, including changes to electron trajectories either from self-fields or from development of beam instabilities. The bremsstrahlung output (dose-rate) scales approximately as IVx, where I is the beam current, V the electron energy, and x is in the range 2.0-2.65 and depends upon the electron angle on the converter. Using experimental beam data (dose-rate, I and V), this equation can be solved for x, a process known as "inverting the radiographer's equation." Inversion methods that rely on thermoluminescent dosimeters, which are time-integrated, yield no information about evolution of the electron beam angle in time. We propose here an inversion method that uses several dose-rate monitors at different angles with respect to the beam axis. By measuring dose-rates at different angles, one can infer the time-dependent beam voltage and angle. This method compares well with estimates of corrected voltage and results in a self-consistent picture of beam dynamics. Techniques are demonstrated using data from self-magnetic pinch experiments at the RITS-6 facility at Sandia National Laboratories.

2.
Rev Sci Instrum ; 89(10): 10D123, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399676

RESUMO

In the self-magnetic-pinch diode, the electron beam, produced through explosive field emission, focuses on the anode surface due to its own magnetic field. This process results in dense plasma formation on the anode surface, consisting primarily of hydrocarbons. Direct measurements of the beam's current profile are necessary in order to understand the pinch dynamics and to determine x-ray source sizes, which should be minimized in radiographic applications. In this paper, the analysis of the C IV doublet (580.1 and 581.2 nm) line shapes will be discussed. The technique yields estimates of the electron density and electron temperature profiles, and the method can be highly beneficial in providing the current density distribution in such diodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA