Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Imaging Radiat Oncol ; 27: 100477, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37635846

RESUMO

Background and Purpose: In online adaptive stereotactic body radiotherapy treatments, linear accelerator delivery accuracy is essential. Recently introduced double stack multileaf collimators (MLCs) have new facets in their calibration. We established a radiation-based leaf-individual calibration (LIMCA) method for double stack MLCs. Materials and Methods: MLC leaf positions were evaluated from four cardinal angles with test patterns at measurement positions throughout the radiation field on EBT3 radiochromic film for each single stack. The accuracy of the method and repeatability of the results were assessed. The effect of MLC positioning errors was characterized for a measured output factor curve and a clinical patient plan. Results: All positions in the motor step - position calibration file were optimized in the established LIMCA method. The resulting double stack mean accuracy for all angles was 0.2 ± 0.1 mm for X1 (left bank) and 0.2 ± 0.2 mm for X2 (right bank). The accuracy of the leaf position evaluation was 0.2 mm (95% confidence level). The MLC calibration remained stable over four months. Small MLC leaf position errors (e.g. 1.2 mm field size reduction) resulted in important dose errors (-5.8 %) for small quadratic fields of 0.83 × 0.83 cm2. Single stack position accuracy was essential for highly modulated treatment plans. Conclusions: LIMCA is a new double stack MLC calibration method that increases treatment accuracy from four angles and for all moving leaves.

3.
Cancers (Basel) ; 15(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37345123

RESUMO

(1) Background: Magnetic-resonance (MR)-guided stereotactic body radiotherapy (SBRT) allows for ablative, non-invasive treatment of liver metastases. However, long-term clinical outcome data are missing. (2) Methods: Patients received MR-guided SBRT with a MRIdian Linac between January 2019 and October 2021 and were part of an ongoing prospective observational registry. Local hepatic control (LHC), distant hepatic control (DHC), progression free survival (PFS) and overall survival (OS) were estimated with the Kaplan-Meier method. Toxicity was documented according to CTCAE (v.5.0). (3) Results: Forty patients were treated for a total of 54 liver metastases (56% with online plan adaptation). Median prescribed dose was 50 Gy in five fractions equal to a biologically effective dose (BED) (alpha/beta = 10 Gy) of 100 Gy. At 1 and 2 years, LHC was 98% and 75%, DHC was 34% and 15%, PFS was 21% and 5% and OS was 83% and 57%. Two-year LHC was higher in case of BED > 100 Gy (100% vs. 57%; log-rank p = 0.04). Acute grade 1 and 2 toxicity (mostly nausea) occurred in 26% and 7% of the patients, with no grade ≥ 3 event. (4) Conclusions: To our knowledge, this is the largest cohort of MR-guided liver SBRT. Long-term local control was promising and underscores the aim of achieving >100 Gy BED. Nonetheless, distant tumor control remains challenging.

4.
Radiat Oncol ; 18(1): 92, 2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37248504

RESUMO

INTRODUCTION: Re-irradiation is frequently performed in the era of precision oncology, but previous doses to organs-at-risk (OAR) must be assessed to avoid cumulative overdoses. Stereotactic magnetic resonance-guided online adaptive radiotherapy (SMART) enables highly precise ablation of tumors close to OAR. However, OAR doses may change considerably during adaptive treatment, which complicates potential re-irradiation. We aimed to compare the baseline plan with different dose accumulation techniques to inform re-irradiation. PATIENTS & METHODS: We analyzed 18 patients who received SMART to lung or liver tumors inside prospective databases. Cumulative doses were calculated inside the planning target volumes (PTV) and OAR for the adapted plans and theoretical non-adapted plans via (1) cumulative dose volume histograms (DVH sum plan) and (2) deformable image registration (DIR)-based dose accumulation to planning images (DIR sum plan). We compared cumulative dose parameters between the baseline plan, DVH sum plan and DIR sum plan using equivalent doses in 2 Gy fractions (EQD2). RESULTS: Individual patients presented relevant increases of near-maximum doses inside the proximal bronchial tree, spinal cord, heart and gastrointestinal OAR when comparing adaptive treatment to the baseline plans. The spinal cord near-maximum doses were significantly increased in the liver patients (D2% median: baseline 6.1 Gy, DIR sum 8.1 Gy, DVH sum 8.4 Gy, p = 0.04; D0.1 cm³ median: baseline 6.1 Gy, DIR sum 8.1 Gy, DVH sum 8.5 Gy, p = 0.04). Three OAR overdoses occurred during adaptive treatment (DIR sum: 1, DVH sum: 2), and four more intense OAR overdoses would have occurred during non-adaptive treatment (DIR sum: 4, DVH sum: 3). Adaptive treatment maintained similar PTV coverages to the baseline plans, while non-adaptive treatment yielded significantly worse PTV coverages in the lung (D95% median: baseline 86.4 Gy, DIR sum 82.4 Gy, DVH sum 82.2 Gy, p = 0.006) and liver patients (D95% median: baseline 87.4 Gy, DIR sum 82.1 Gy, DVH sum 81.1 Gy, p = 0.04). CONCLUSION: OAR doses can increase during SMART, so that re-irradiation should be planned based on dose accumulations of the adapted plans instead of the baseline plan. Cumulative dose volume histograms represent a simple and conservative dose accumulation strategy.


Assuntos
Neoplasias Pulmonares , Radioterapia de Intensidade Modulada , Humanos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Medicina de Precisão , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/patologia , Radioterapia de Intensidade Modulada/métodos , Órgãos em Risco/efeitos da radiação , Espectroscopia de Ressonância Magnética
5.
Radiat Oncol ; 18(1): 74, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37143154

RESUMO

BACKGROUND: Patients with locally-advanced non-small-cell lung cancer (LA-NSCLC) are often ineligible for surgery, so that definitive chemoradiotherapy (CRT) represents the treatment of choice. Nevertheless, long-term tumor control is often not achieved. Intensification of radiotherapy (RT) to improve locoregional tumor control is limited by the detrimental effect of higher radiation exposure of thoracic organs-at-risk (OAR). This narrow therapeutic ratio may be expanded by exploiting the advantages of magnetic resonance (MR) linear accelerators, mainly the online adaptation of the treatment plan to the current anatomy based on daily acquired MR images. However, MR-guidance is both labor-intensive and increases treatment times, which raises the question of its clinical feasibility to treat LA-NSCLC. Therefore, the PUMA trial was designed as a prospective, multicenter phase I trial to demonstrate the clinical feasibility of MR-guided online adaptive RT in LA-NSCLC. METHODS: Thirty patients with LA-NSCLC in stage III A-C will be accrued at three German university hospitals to receive MR-guided online adaptive RT at two different MR-linac systems (MRIdian Linac®, View Ray Inc. and Elekta Unity®, Elekta AB) with concurrent chemotherapy. Conventionally fractioned RT with isotoxic dose escalation up to 70 Gy is applied. Online plan adaptation is performed once weekly or in case of major anatomical changes. Patients are followed-up by thoracic CT- and MR-imaging for 24 months after treatment. The primary endpoint is twofold: (1) successfully completed online adapted fractions, (2) on-table time. Main secondary endpoints include adaptation frequency, toxicity, local tumor control, progression-free and overall survival. DISCUSSION: PUMA aims to demonstrate the clinical feasibility of MR-guided online adaptive RT of LA-NSCLC. If successful, PUMA will be followed by a clinical phase II trial that further investigates the clinical benefits of this approach. Moreover, PUMA is part of a large multidisciplinary project to develop MR-guidance techniques. TRIAL REGISTRATION: ClinicalTrials.gov: NCT05237453 .


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Radioterapia Guiada por Imagem , Humanos , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Estudos Prospectivos , Planejamento da Radioterapia Assistida por Computador/métodos , Proteínas Reguladoras de Apoptose , Imageamento por Ressonância Magnética/métodos , Radioterapia Guiada por Imagem/métodos , Espectroscopia de Ressonância Magnética
6.
Clin Transl Radiat Oncol ; 39: 100567, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36935853

RESUMO

Purpose/Objective: To evaluate the potential of stereotactic magnetic resonance-guided online adaptive radiotherapy (SMART) to fulfill dose recommendations for stereotactic body radiotherapy (SBRT) of adrenal metastases and spare organs at risk (OAR). Materials and methods: In this subgroup analysis of a prospective registry trial, 22 patients with adrenal metastases were treated on a 0.35 T MR-Linac in 5-12 fractions with fraction doses of 4-10 Gy. Baseline plans were re-calculated to the anatomy of the day. These predicted plans were reoptimized to generate adapted plans. Baseline, predicted and adapted plans were compared with regard to PTV objectives, OAR constraints and published dose recommendations. Results: The cohort comprised patients with large GTV (median 36.0 cc) and PTV (median 66.6 cc) and predominantly left-sided metastases. 179 of 181 fractions (98.9 %) were adapted because of PTV and/or OAR violations. Predicted plans frequently violated PTV coverage (99.4 %) and adjacent OAR constraints (bowel: 32.9 %, stomach: 32.8 %, duodenum: 10.4 %, kidneys: 10.8 %). In the predicted plans, the volume exposed to the maximum dose was exceeded up to 16-fold in the duodenum and up to 96-fold in the spinal cord. Adapted plans significantly reduced OAR violations by 96.4 % for the bowel, 98.5 % for the stomach, 85.6 % for the duodenum and 83.3 % for the kidneys. Plan adaptation improved PTV coverage from 82.7 ± 8.1 % to 90.6 ± 4.9 % (p < 0.001). Furthermore, recently established target volume thresholds could easily be fulfilled with SMART. No toxicities > grade II occurred. Conclusion: SMART fulfills established GTV and PTV dose recommendations while simultaneously sparing organs at risk even in a challenging cohort.

7.
Lung Cancer ; 179: 107175, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36965207

RESUMO

BACKGROUND: Stereotactic radiotherapy of ultracentral lung tumors (ULT) is challenging as it may cause overdoses to sensitive mediastinal organs with severe complications. We aimed to describe long-term outcomes after stereotactic magnetic resonance (MR)-guided online adaptive radiotherapy (SMART) as an innovative treatment of ULT. PATIENTS & METHODS: We analyzed 36 patients that received SMART to 40 tumors between 02/2020 - 08/2021 inside prospective databases. ULT were defined by planning target volume (PTV) overlap with the proximal bronchial tree or esophagus. We calculated Kaplan Meier estimates for overall survival (OS) and progression-free survival (PFS), and competing risk estimates for the incidence of tumor progression and treatment-related toxicities. ULT patients (N = 16) were compared to non-ULT patients (N = 20). RESULTS: Baseline characteristics were similar between ULT and non-ULT, but ULT were larger (median PTV: ULT 54.7 cm3, non-ULT 19.2 cm3). Median follow-up was 23.6 months. ULT and non-ULT showed a similar OS (2-years: ULT 67%, non-ULT 60%, p = 0.7) and PFS (2-years: ULT 37%, non-ULT 34%, p = 0.73). Progressions occurred mainly at distant sites (2-year incidence of distant progression: ULT 63%, non-ULT 61%, p = 0.77), while local tumor control was favorable (2-year incidence of local progression: ULT 7%, non-ULT 0%, p = 0.22). Treatment of ULT led to significantly more toxicities ≥ grade (G) 2 (ULT: 9 (56%), non-ULT: 1 (5%), p = 0.002). Most toxicities were moderate (G2). Two ULT patients developed high-grade toxicities: 1) esophagitis G3 and bronchial bleeding G4 after VEGF treatment, 2) bronchial bleeding G3. Estimated incidence of high-grade toxicities was 19% (3-48%) in ULT, and no treatment-related death occurred. CONCLUSION: Our small series supports SMART as potentially effective treatment of ULT. SMART with careful fractionation could reduce severe complications, but treatment of ULT remains a high-risk procedure and needs careful benefit-risk-assessment.


Assuntos
Neoplasias Pulmonares , Radiocirurgia , Humanos , Neoplasias Pulmonares/patologia , Resultado do Tratamento , Pulmão/patologia , Fracionamento da Dose de Radiação , Radiocirurgia/métodos
8.
Z Med Phys ; 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36759229

RESUMO

PURPOSE: Dose calculation for MR-guided radiotherapy (MRgRT) at the 0.35 T MR-Linac is currently based on deformation of planning CTs (defCT) acquired for each patient. We present a simple and robust bulk density overwrite synthetic CT (sCT) method for abdominal treatments in order to streamline clinical workflows. METHOD: Fifty-six abdominal patient treatment plans were retrospectively evaluated. All patients had been treated at the MR-Linac using MR datasets for treatment planning and plan adaption and defCT for dose calculation. Bulk density CTs (4M-sCT) were generated from MR images with four material compartments (bone, lung, air, soft tissue). The relative electron densities (RED) for bone and lung were extracted from contoured CT structure average REDs. For soft tissue, a correlation between BMI and RED was evaluated. Dose was recalculated on 4M-sCT and compared to dose distributions on defCTs assessing dose differences in the PTV and organs at risk (OAR). RESULTS: Mean RED of bone was 1.17 ±â€¯0.02, mean RED of lung 0.17 ±â€¯0.05. The correlation between BMI and RED for soft tissue was statistically significant (p < 0.01). PTV dose differences between 4M-sCT and defCT were Dmean: -0.4 ±â€¯1.0%, D1%: -0.3 ±â€¯1.1% and D95%: -0.5 ±â€¯1.0%. OARs showed D2%: -0.3 ±â€¯1.9% and Dmean: -0.1 ±â€¯1.4% differences. Local 3D gamma index pass rates (2%/2mm) between dose calculated using 4M-sCT and defCT were 96.8 ±â€¯2.6% (range 89.9-99.6%). CONCLUSION: The presented method for sCT generation enables precise dose calculation for MR-only abdominal MRgRT.

9.
Cancers (Basel) ; 14(24)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36551527

RESUMO

(1) Background: To assess dosimetry benefits of stereotactic magnetic resonance (MR)-guided online adaptive radiotherapy (SMART) of liver metastases. (2) Methods: This is a subgroup analysis of an ongoing prospective registry including patients with liver metastases. Patients were treated at the MRIdian Linac between February 2020 and April 2022. The baseline plan was recalculated based on the updated anatomy of the day to generate the predicted plan. This predicted plan could then be re-optimized to create an adapted plan. (3) Results: Twenty-three patients received 30 SMART treatment series of in total 36 liver metastases. Most common primary tumors were colorectal- and pancreatic carcinoma (26.1% respectively). Most frequent fractionation scheme (46.6%) was 50 Gy in five fractions. The adapted plan was significantly superior compared to the predicted plan in regard to planning-target-volume (PTV) coverage, PTV overdosing, and organs-at-risk (OAR) dose constraints violations (91.5 vs. 38.0%, 6 vs. 19% and 0.6 vs. 10.0%; each p < 0.001). Plan adaptation significantly increased median BEDD95 by 3.2 Gy (p < 0.001). Mean total duration of SMART was 72.4 min. (4) Conclusions: SMART offers individualized ablative irradiation of liver metastases tailored to the daily anatomy with significant superior tumor coverage and improved sparing of OAR.

10.
J Appl Clin Med Phys ; 23(3): e13523, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35019212

RESUMO

Online adaption of treatment plans on a magnetic resonance (MR)-Linac enables the daily creation of new (adapted) treatment plans using current anatomical information of the patient as seen on MR images. Plan quality assurance (QA) relies on a secondary dose calculation (SDC) that is required because a pretreatment measurement is impossible during the adaptive workflow. However, failure mode and effect analysis of the adaptive planning process shows a large number of error sources, and not all of them are covered by SDC. As the complex multidisciplinary adaption process takes place under time pressure, additional software solutions for pretreatment per-fraction QA need to be used. It is essential to double-check SDC input to ensure a safe treatment delivery. Here, we present an automated treatment plan check tool for adaptive radiotherapy (APART) at a 0.35 T MR-Linac. It is designed to complement the manufacturer-provided adaptive QA tool comprising SDC. Checks performed by APART include contour analysis, electron density map examinations, and fluence modulation complexity controls. For nine of 362 adapted fractions (2.5%), irregularities regarding missing slices in target volumes and organs at risks as well as in margin expansion of target volumes have been found. This demonstrates that mistakes occur and can be detected by additional QA measures, especially contour analysis. Therefore, it is recommended to implement further QA tools additional to what the manufacturer provides to facilitate an informed decision about the quality of the treatment plan.


Assuntos
Radioterapia Guiada por Imagem , Radioterapia de Intensidade Modulada , Humanos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Aceleradores de Partículas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodos , Radioterapia de Intensidade Modulada/métodos , Software
11.
Strahlenther Onkol ; 198(1): 56-65, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34468783

RESUMO

OBJECTIVE: Stereotactic body radiotherapy (SBRT) is a noninvasive treatment option for lymph node metastases (LNM). Magnetic resonance (MR)-guidance offers superior tissue contrast and enables treatment of targets in close vicinity to radiosensitive organs at risk (OAR). However, literature on MR-guided SBRT of LNM is scarce with no report on outcome parameters. MATERIALS AND METHODS: We report a subgroup analysis of a prospective observational study comprising patients with LNM. Patients received MR-guided SBRT at our MRIdian Linac (ViewRay Inc., Mountain View, CA, USA) between January 2019 and February 2020. Local control (LC), progression-free survival (PFS) and overall survival (OS) analysis were performed using the Kaplan-Meier method with log rank test to test for significance (p < 0.05). Our patient-reported outcome questionnaire was utilized to evaluate patients' perspective. The CTCAE (Common Terminology Criteria for Adverse Events) v. 5.0 was used to describe toxicity. RESULTS: Twenty-nine patients (72.4% with prostate cancer; 51.7% with no distant metastases) received MR-guided SBRT for in total 39 LNM. Median dose was 27 Gy in three fractions, prescribed to the 80% isodose. At 1­year, estimated LC, PFS and OS were 92.6, 67.4 and 100.0%. Compared to baseline, six patients (20.7%) developed new grade I toxicities (mainly fatigue). One grade II toxicity occurred (fatigue), with no adverse event grade ≥III. Overall treatment experience was rated particularly positive, while the technically required low room temperature still represents the greatest obstacle in the pursuit of the ideal patient acceptance. CONCLUSION: MR-guided SBRT of LNM was demonstrated to be a well-accepted treatment modality with excellent preliminary results. Future studies should evaluate the clinical superiority to conventional SBRT.


Assuntos
Radiocirurgia , Radioterapia Guiada por Imagem , Humanos , Metástase Linfática/radioterapia , Espectroscopia de Ressonância Magnética , Masculino , Medidas de Resultados Relatados pelo Paciente , Radiocirurgia/métodos , Radioterapia Guiada por Imagem/métodos
12.
Med Phys ; 48(2): 587-596, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33319394

RESUMO

PURPOSE: Hybrid MRI-linear accelerator systems (MR-linacs) allow for the incorporation of MR images with high soft-tissue contrast into the radiation therapy procedure prior to, during, or post irradiation. This allows not only for the optimization of the treatment planning, but also for real-time monitoring of the tumor position using cine MRI, from which intrafractional motion can be compensated. Fast imaging and accurate tumor tracking are crucial for effective compensation. This study investigates the application of cine MRI with a radial acquisition scheme on a low-field MR-linac to accelerate the acquisition rate and evaluates the effect on tracking accuracy. METHODS: An MR sequence using tiny golden-angle radial k-space sampling was developed and applied to cine imaging on patients with liver tumors on a 0.35 T MR-linac. Tumor tracking was assessed for accuracy and stability from the cine images with increasing k-space undersampling factors. Tracking was achieved using two different auto-segmentation algorithms: a deformable image registration B-spline similar to that implemented on the MR-linac and a convolutional neural network approach known as U-Net. RESULTS: Radial imaging allows for increased temporal resolution with reliable tumor tracking, although tracking robustness decreases as temporal resolution increases. Additional acquisition-based artifacts can be avoided by reducing the angle increment using tiny golden-angles. The U-net algorithm was found to have superior auto-segmentation metrics compared to B-spline. U-net was able to track two well-defined tumors, imaged with just 30 spokes per image (10.6 frames per second), with an average Dice coefficient ≥ 83%, Hausdorff distance ≤ 1.4 pixel, and mean contour distance ≤ 0.5 pixel. CONCLUSIONS: Radial acquisitions are commonplace in dynamic imaging; however, in MR-guided radiotherapy, robust tumor tracking is also required. This study demonstrates the in vivo feasibility of tumor tracking from radially acquired images on a low-field MR-linac. Radial imaging allows for decreased image acquisition times while maintaining robust tracking. The U-net algorithm can track a tumor with higher accuracy in images with undersampling artifacts than a conventional deformable B-spline algorithm and is a promising tool for tracking in MR-guided radiation therapy.


Assuntos
Imageamento por Ressonância Magnética , Neoplasias , Humanos , Aprendizado de Máquina , Movimento (Física) , Neoplasias/diagnóstico por imagem , Neoplasias/radioterapia , Aceleradores de Partículas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...