Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 7(5): 4352-4362, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35155928

RESUMO

The conductivity and the state of the surface of supports are of vital importance for metallization via electrodeposition. In this study, we show that the metallization of a carbon fiber-reinforced polymer (CFRP) can be carried out directly if the intermediate graphene oxide (GO) layer is chemically reduced on the CFRP surface. Notably, this approach utilizing only the chemically reduced GO as a conductive support allows us to obtain insights into the interaction of rGO and the electrodeposited metal. Our study reveals that under the same contact current experimental conditions, the electrodeposition of Cu and Ni on rGO follows significantly different deposition modes, resulting in the formation of three-dimensional (3D) and free-standing metallic foils, respectively. Considering that Ni adsorption energy is larger than Ni cohesive energy, it is expected that the adhesion of Ni on rGO@CFRP is enhanced compared to Cu. In contrast, the adhesion of deposited Ni is reduced, suggesting diffusion of H+ between rGO and CFRP, which promotes the hydrogen evolution reaction (HER) and results in the formation of free-standing Ni foils. We ascribe this phenomenon to the unique properties of rGO and the nature of Cu and Ni deposition from electrolytic baths. In the latter, the high adsorption energy of Ni on defective rGO along with HER is the key factor for the formation of the porous layer and free-standing foils.

2.
Ultramicroscopy ; 235: 113483, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35219002

RESUMO

Support foils for (scanning) transmission electron microscopy ((S)TEM) samples are commonly amorphous carbon foils. State of the art (S)TEM high resolution imaging methods use ultra-thin carbon foils of only a few nm thickness, especially for imaging beam sensitive materials with low acceleration voltages and electron fluxes. In this study we analyze in situ the effect of chemical etching on a 2 nm amorphous carbon foil due to residual oxygen and by leaking in oxygen into the microscope column. We vary the vacuum level on a Nion UltraStem 100 between ultra high vacuum and that typical in TEM. This enables us to carry out a systematic investigation of chemical etching as function of both, oxygen pressure and electron flux. In addition the results of chemical etching are compared with those of sputtering from knock-on damage leading to the conclusion that chemical etching is the important cause for carbon removal from an amorphous foil at low oxygen pressures and low electron fluxes. We observe that the electron flux dependency using high resolution scanning conditions differs from the case of a resting electron beam. To interpret the results of chemical etching a scanning etching model is proposed that takes care of the specific conditions of STEM.

3.
J Nanosci Nanotechnol ; 20(10): 6525-6531, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32385009

RESUMO

The wide range of actual and potential applications of nanoparticles, highlight the necessity of a reliable production method for both quality and quantity of the products. Mechanical attrition is one of the first well-known techniques used to produce nanoparticles. However, these approaches have been restricted to produce uniform particles below the critical size of 15 nm because of the attrition balance limit. This paper introduces the magnetite-silicate raw material of a Kiruna-type ore deposit as a novel precursor, which enables the production of small iron oxide nanoparticles below the critical size by mechanical attrition. X-ray fluorescence (XRF), powder X-ray diffractometry (pXRD), dynamic light scattering (DLS) and transmission electron microscopy (TEM) were used for characterization of the precursor and obtained nanoparticles. The results indicate that the particles with a mean diameter of 10.7(2.7) nm consist of mainly less than one crystallite. The significant size reduction below the attrition balance limit can be attributed to the quartz content of the raw material, which operated as supporting micro-balls for transferring the energy during the milling process.

4.
Nanoscale Adv ; 2(9): 3991-4002, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36132752

RESUMO

Nanocrystalline silicon nanoparticles with a median crystallite size of 3-4 nm and several crystalline phases and defects (e.g. twin boundary) were produced by femtosecond laser processing of a SiO2/Si target in various organic fluids. Furthermore, a nanoscaled amorphous oxide layer and a few atomic layers of a graphite shell were detected in ethanol and 2-butanol correspondingly. The ultrafast laser pulses may manipulate nanostructures at the atomic level and generate a high density of defects; this may be correlated with significant thermal stresses on nanoparticles and rapid condensation of primary nanoparticles with high cooling rates. Size distribution width and a polydispersity index slightly increased with increasing laser fluence in ethanol. In 2-butanol, the maximum ablation volume was observed. The specific ablation rates in 2-butanol and ethanol were approximately five times higher than n-hexane. The lowest ablation efficiency in n-hexane can be associated with femtosecond laser-induced photolysis and pyrolysis of solvent molecules, as total energy deposition on the material may be reduced due to the formation of carbonaceous products. The roughened zones (average roughness of ∼400 nm) in circumferences of the ablated craters in 2-butanol may be related to a correlation between the erosive power of the vapour bubble collapse and higher pressure at the bubble wall in relatively high dynamic viscosity fluids. Furthermore, sputtering of a pristine surface by releasing nanoparticles from the collective collapse of up-flow vapour bubbles can also contribute to the generation of roughened regions.

5.
Sci Adv ; 5(10): eaax3894, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31667344

RESUMO

We demonstrate electrodeposition as a synthesis method for fabrication of Al coatings, up to 10 µm thick, containing a high density of genuine growth twins. This has not been expected since the twin boundary energy of pure Al is very high. TEM methods were used to analyze deposited Al and its nanoscaled twins. DFT methods confirmed that the influence of the substrate is limited to the layers close to the interface. Our findings are different from those achieved by sputtering of Al coatings restricted to a thickness less than 100 nm with twins dominated by epitaxial effects. We propose that in the case of electrodeposition, a high density of twins arises because of fast nucleation and is additionally promoted by a monolayer of adsorbed hydrogen originating from water impurities. Therefore, electrodeposition is a viable approach for tailoring the structure and properties of thicker, deposited Al coatings reinforced by twins.

6.
Sci Rep ; 9(1): 2696, 2019 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-30804439

RESUMO

Here we show that the well-known ovalbumin epitope SIINFEKL that is routinely used to stimulate ovalbumin-specific T cells and to test new vaccine adjuvants can form a stable hydrogel. We investigate properties of this hydrogel by a range of spectroscopic and imaging techniques demonstrating that the hydrogel is stabilized by self-assembly of the peptide into nanofibres via stacking of ß-sheets. As peptide hydrogels are known to stimulate an immune response as adjuvants, the immunoactive properties of the SIINFEKL peptide may also originate from its propensity to self-assemble into a hydrogel. This finding requires a re-evaluation of this epitope in adjuvant testing.


Assuntos
Epitopos/química , Hidrogéis/química , Ovalbumina/química , Peptídeos/química , Animais , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/ultraestrutura , Dicroísmo Circular , Humanos , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Varredura , Fragmentos de Peptídeos/química , Espectroscopia de Infravermelho com Transformada de Fourier
7.
Chemphyschem ; 19(11): 1414-1419, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29543395

RESUMO

Homogeneous polycrystalline Fex Oy nanoparticles were generated by ablation of iron targets in water by nanosecond laser pulses at 532 nm. In ethanol, crystalline core-shell Fe/Fex Oy structures with size medians around 20 nm were produced. The ablation of FeWx Oy targets in water resulted in crystalline hollow shells and homogeneous FeWx Oy nanoparticles. In contrast, amorphous core-shell FeWx Oy nanoparticles with a median size of 17 nm were produced in ethanol. The size distribution of both the Fex Oy and the FeWx Oy particles showed a slight dependence on fluence and pulse number. This may be related to primary and secondary ablation and modification mechanisms.

8.
Mater Res Lett ; 5(3): 135-143, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28382229

RESUMO

We used a novel diffraction-based method to extract the local, atomic-level elastic strain in nanoscale amorphous TiAl films during in situ transmission electron microscopy deformation, while simultaneously measuring the macroscopic strain. The complementary strain measurements revealed significant anelastic deformation, which was independently confirmed by strain rate experiments. Furthermore, the distribution of first nearest-neighbor distances became narrower during loading and permanent changes were observed in the atomic structure upon unloading, even in the absence of macroscopic plasticity. The results demonstrate the capability of in situ electron diffraction to probe structural rearrangements and decouple elastic and anelastic deformation in metallic glasses.

9.
Chemphyschem ; 18(9): 1118-1124, 2017 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-28042935

RESUMO

The nanosecond-pulse laser-assisted generation of Ni/NiOx core/shell nanoparticles (NPs) in water and alcoholic fluids can yield colloidal solutions without surfactants. The size distribution can be controlled by the nature of the alcohol, the number of laser pulses and the laser fluence. The incubation of the nickel target ablation in liquid contact shows a dependence on the carbon number of the respective alcohol. The laser-generated NPs consist of crystalline nickel cores with face-centred cubic patterns and stacking fault defects surrounded by nickel oxide shells. The solvent butanol, in contrast to ethanol and isopropanol, yields a narrow, nearly unimodal, size distribution. The majority of NPs have low size distributions, with medians in the range of 10-20 nm. These can be related to a metal ablation plume interacting with a supercritical liquid that decelerates the ejected material in a low-density metal-water mixing region. NPs in the range above 30 nm result in a minority distribution tail that strongly depends on the fluid nature, the pulse number and the fluence. This coarse NP set may be correlated with the rupture of a superheated molten-metal layer into larger entities.

10.
Sci Rep ; 5: 16345, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26552934

RESUMO

A critical assumption underlying in situ transmission electron microscopy studies is that the electron beam (e-beam) exposure does not fundamentally alter the intrinsic deformation behavior of the materials being probed. Here, we show that e-beam exposure causes increased dislocation activation and marked stress relaxation in aluminum and gold films spanning a range of thicknesses (80-400 nanometers) and grain sizes (50-220 nanometers). Furthermore, the e-beam induces anomalous sample necking, which unusually depends more on the e-beam diameter than intensity. Notably, the stress relaxation in both aluminum and gold occurs at beam energies well below their damage thresholds. More remarkably, the stress relaxation and/or sample necking is significantly more pronounced at lower accelerating voltages (120 kV versus 200 kV) in both the metals. These observations in aluminum and gold, two metals with highly dissimilar atomic weights and properties, indicate that e-beam exposure can cause anomalous behavior in a broad spectrum of nanostructured materials, and simultaneously suggest a strategy to minimize such artifacts.

11.
Adv Mater ; 27(41): 6438-43, 2015 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-26398487

RESUMO

A novel synthesis strategy is presented for depositing metallic Ag at the anode during simultaneous electrochemical oxidation of Al. This unexpected result is achieved based on galvanic coupling. Metallic dendritic nanostructures well-anchored in a high surface area supporting matrix are envisioned to open up a new avenue of applications.

12.
Sci Total Environ ; 461-462: 108-16, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23712121

RESUMO

The quantities of natural organic matter (NOM) and associated iron (Fe) in soil extracts are known to increase with increasing extractant pH. However, it was unclear how the extraction pH affects Fe speciation for particles below 30 nm. We used flow field-flow fractionation (FlowFFF) and transmission electron microscopy (TEM) to investigate the association of Fe and trace elements with NOM and nanoparticulate iron (oxy)hydroxides in podzol extracts. For extracts prepared at the native soil pH (~4), and within a 1-30 nm size range, Fe was associated with NOM. In extracts with a pH≥7 from the E and B soil horizons, Fe was associated with NOM as well as with iron (oxy)hydroxide nanoparticles with a size of approximately 10 nm. The iron (oxy)hydroxide nanoparticles may have either formed within the soil extracts in response to the increase in pH, or they were mobilized from the soil. Additionally, pH shift experiments showed that iron (oxy)hydroxides formed when the native soil pH (~4) was increased to 9 following the extraction. The iron (oxy)hydroxide nanoparticles aggregated if the pH was decreased from 9 to 4. The speciation of Fe also influenced trace element speciation: lead was partly associated with the iron (oxy)hydroxides (when present), while copper binding to NOM remained unaffected by the presence of iron (oxy)hydroxide nanoparticles. The results of this study are important for interpreting the representativeness of soil extracts prepared at a pH other than the native soil pH, and for understanding the changes in Fe speciation that occur along a pH gradient.


Assuntos
Substâncias Húmicas/análise , Ferro/química , Nanopartículas Metálicas/química , Solo/química , Adsorção , Áustria , Fracionamento por Campo e Fluxo , Concentração de Íons de Hidrogênio , Chumbo/química , Espectrometria de Massas , Microscopia Eletrônica de Transmissão
13.
Phys Chem Chem Phys ; 14(2): 972-80, 2012 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-22124412

RESUMO

We demonstrate that nanofabrication of 3D dendritic CoNi alloy foams with an open porous structure can be achieved by electrodeposition onto a single-crystalline Cu(111) substrate at ambient conditions. The very low wettability of this substrate caused by its low surface energy allows tailoring the CoNi deposit morphology. This is concluded from a comparison of polycrystalline Cu substrates with single-crystalline ones of different orientations. The advantages of the present CoNi alloy foams are low internal stresses and good mechanical stability on the substrate. In a second step, by comparing the catalytic properties of the achieved foam with those of CoNi layers obtained on polycrystalline Cu substrates, it is shown that the morphology of the CoNi layers has a decisive influence on the kinetics of the surface redox reaction. The higher reaction rate makes the open foam suitable as catalyst for oxygen evolution in electrolysers. The reversibility of the redox process provides great potential for the achieved porous layers to be used as positive material in alkaline batteries.

14.
Microsc Microanal ; 17(6): 866-71, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22050969

RESUMO

To analyze nanocrystalline structures quantitatively in 3D, a novel method is presented based on electron diffraction. It allows determination of the average size and morphology of the coherently scattering domains (CSD) in a straightforward way without the need to prepare multiple sections. The method is applicable to all kinds of bulk nanocrystalline materials. As an example, the average size of the CSD in nanocrystalline FeAl made by severe plastic deformation is determined in 3D. Assuming ellipsoidal CSD, it is deduced that the CSD have a width of 19 ± 2 nm, a length of 18 ± 1 nm, and a height of 10 ± 1 nm.


Assuntos
Ligas/análise , Teste de Materiais/métodos , Microscopia Eletrônica de Transmissão/métodos , Nanopartículas/análise , Alumínio/análise , Elétrons , Processamento de Imagem Assistida por Computador , Ferro/análise , Teste de Materiais/instrumentação , Microscopia Eletrônica de Transmissão/instrumentação , Nanopartículas/ultraestrutura , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...