Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 11: e16534, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38099313

RESUMO

Background: Components of diet known as fallback foods are argued to be critical in shaping primate dental anatomy. Such foods of low(er) nutritional quality are often non-preferred, mechanically challenging resources that species resort to during ecological crunch periods. An oft-cited example of the importance of dietary fallbacks in shaping primate anatomy is the grey-cheeked mangabey Lophocebus albigena. This species relies upon hard seeds only when softer, preferred resources are not available, a fact which has been linked to its thick dental enamel. Another mangabey species with thick enamel, the sooty mangabey Cercocebus atys, processes a mechanically challenging food year-round. That the two mangabey species are both thickly-enameled suggests that both fallback and routine consumption of hard foods are associated with the same anatomical feature, complicating interpretations of thick enamel in the fossil record. We anticipated that aspects of enamel other than its thickness might differ between Cercocebus atys and Lophocebus albigena. We hypothesized that to function adequately under a dietary regime of routine hard-object feeding, the molars of Cercocebus atys would be more fracture and wear resistant than those of Lophocebus albigena. Methods: Here we investigated critical fracture loads, nanomechanical properties of enamel, and enamel decussation in Cercocebus atys and Lophocebus albigena. Molars of Cercopithecus, a genus not associated with hard-object feeding, were included for comparison. Critical loads were estimated using measurements from 2D µCT slices of upper and lower molars. Nanomechanical properties (by nanoindentation) and decussation of enamel prisms (by SEM-imaging) in trigon basins of one upper second molar per taxon were compared. Results: Protocone and protoconid critical fracture loads were significantly greater in Cercocebus atys than Lophocebus albigena and greater in both than in Cercopithecus. Elastic modulus, hardness, and elasticity index in most regions of the crown were greater in Cercocebus atys than in the other two taxa, with the greatest difference in the outer enamel. All taxa had decussated enamel, but that of Cercocebus atys uniquely exhibited a bundle of transversely oriented prisms cervical to the radial enamel. Quantitative comparison of in-plane and out-of-plane prism angles suggests that decussation in trigon basin enamel is more complex in Cercocebus atys than it is in either Lophocebus albigena or Cercopithecus cephus. These findings suggest that Cercocebus atys molars are more fracture and wear resistant than those of Lophocebus albigena and Cercopithecus. Recognition of these differences between Cercocebus atys and Lophocebus albigena molars sharpens our understanding of associations between hard-object feeding and dental anatomy under conditions of routine vs. fallback hard-object feeding and provides a basis for dietary inference in fossil primates, including hominins.


Assuntos
Cercocebus , Hominidae , Animais , Cercocebus/anatomia & histologia , Cercocebus atys , Comportamento Alimentar , Sementes , Cercopithecus
2.
Arch Oral Biol ; 136: 105371, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35183920

RESUMO

OBJECTIVES: The aims of the study were to evaluate the roles of odontoblast apoptosis in the progression of tubular sclerosis of teeth from donors at different ages and assess its correlation to chemical composition and mechanical properties. DESIGN: Healthy human teeth were obtained and divided into young (age ≤ 25, n = 12) and old (age ≥ 60, n = 12) groups. Odontoblasts were counted with standard hematoxylin and eosin staining. Odontoblast apoptosis within dentinal tubules was determined by cleaved caspase-3 immunostaining. Teeth in each group were evaluated by dynamic nanoindentation and energy-dispersive X-ray spectroscopy (EDS). RESULTS: The number of odontoblasts decreased significantly with age. The most prominent change occurred in the apical third of roots. Odontoblastic apoptosis was visualized within dentinal tubules. The apoptosis staining fraction was significantly higher in the outer and inner dentin of old teeth when compared with young teeth (p < 0.05). EDS showed increased calcium content in peritubular dentin but a decrease in the intertubular dentin with increasing age. Scanning based nanoindentation showed that the old intertubular dentin exhibited a significantly higher elastic modulus. CONCLUSIONS: Odontoblast apoptosis, starting at the cell extension in dentinal tubules and proceeding from outer to inner dentin, contributes to the stoichiometric Ca/P ratio in peritubular dentin, which is potentially responsible for intratubular mineralization due to an imbalance of calcium and phosphorous ions.


Assuntos
Dentina Secundária , Odontoblastos , Envelhecimento , Apoptose , Dentina , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...