Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 622(7981): 36-37, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37759115
2.
Nature ; 619(7970): 495-499, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37344594

RESUMO

Strongly interacting topological matter1 exhibits fundamentally new phenomena with potential applications in quantum information technology2,3. Emblematic instances are fractional quantum Hall (FQH) states4, in which the interplay of a magnetic field and strong interactions gives rise to fractionally charged quasi-particles, long-ranged entanglement and anyonic exchange statistics. Progress in engineering synthetic magnetic fields5-21 has raised the hope to create these exotic states in controlled quantum systems. However, except for a recent Laughlin state of light22, preparing FQH states in engineered systems remains elusive. Here we realize a FQH state with ultracold atoms in an optical lattice. The state is a lattice version of a bosonic ν = 1/2 Laughlin state4,23 with two particles on 16 sites. This minimal system already captures many hallmark features of Laughlin-type FQH states24-28: we observe a suppression of two-body interactions, we find a distinctive vortex structure in the density correlations and we measure a fractional Hall conductivity of σH/σ0 = 0.6(2) by means of the bulk response to a magnetic perturbation. Furthermore, by tuning the magnetic field, we map out the transition point between the normal and the FQH regime through a spectroscopic investigation of the many-body gap. Our work provides a starting point for exploring highly entangled topological matter with ultracold atoms29-33.

3.
Phys Rev Lett ; 130(18): 186702, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37204885

RESUMO

We show that a chiral spin liquid spontaneously emerges in partially amorphous, polycrystalline, or ion-irradiated Kitaev materials. In these systems, time-reversal symmetry is broken spontaneously due to a nonzero density of plaquettes with an odd number of edges n_{odd}. This mechanism opens a sizable gap, at small n_{odd} compatible with that of typical amorphous materials and polycrystals, and which can alternatively be induced by ion irradiation. We find that the gap is proportional to n_{odd}, saturating at n_{odd}∼40%. Using exact diagonalization, we find that the chiral spin liquid is approximately as stable to Heisenberg interactions as Kitaev's honeycomb spin-liquid model. Our results open up a significant number of noncrystalline systems where chiral spin liquids can emerge without external magnetic fields.

4.
Sci Adv ; 9(19): eadf7220, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37172096

RESUMO

Quantum Hall (QH) edge channels propagating along the periphery of two-dimensional (2D) electron gases under perpendicular magnetic field are a major paradigm in physics. However, groundbreaking experiments that could use them in graphene are hampered by the conjecture that QH edge channels undergo a reconstruction with additional nontopological upstream modes. By performing scanning tunneling spectroscopy up to the edge of a graphene flake on hexagonal boron nitride, we show that QH edge channels are confined to a few magnetic lengths at the crystal edges. This implies that they are ideal 1D chiral channels defined by boundary conditions of vanishing electronic wave functions at the crystal edges, hence free of electrostatic reconstruction. We further evidence a uniform charge carrier density at the edges, incompatible with the existence of upstream modes. This work has profound implications for electron and heat transport experiments in graphene-based systems and other 2D crystalline materials.

5.
Nature ; 605(7908): 51-56, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35508777

RESUMO

ABSTARCT: When electrons populate a flat band their kinetic energy becomes negligible, forcing them to organize in exotic many-body states to minimize their Coulomb energy1-5. The zeroth Landau level of graphene under a magnetic field is a particularly interesting strongly interacting flat band because interelectron interactions are predicted to induce a rich variety of broken-symmetry states with distinct topological and lattice-scale orders6-11. Evidence for these states stems mostly from indirect transport experiments that suggest that broken-symmetry states are tunable by boosting the Zeeman energy12 or by dielectric screening of the Coulomb interaction13. However, confirming the existence of these ground states requires a direct visualization of their lattice-scale orders14. Here we image three distinct broken-symmetry phases in graphene using scanning tunnelling spectroscopy. We explore the phase diagram by tuning the screening of the Coulomb interaction by a low- or high-dielectric-constant environment, and with a magnetic field. In the unscreened case, we find a Kekulé bond order, consistent with observations of an insulating state undergoing a magnetic-field driven Kosterlitz-Thouless transition15,16. Under dielectric screening, a sublattice-unpolarized ground state13 emerges at low magnetic fields, and transits to a charge-density-wave order with partial sublattice polarization at higher magnetic fields. The Kekulé and charge-density-wave orders furthermore coexist with additional, secondary lattice-scale orders that enrich the phase diagram beyond current theory predictions6-10. This screening-induced tunability of broken-symmetry orders may prove valuable to uncover correlated phases of matter in other quantum materials.

6.
Phys Rev Lett ; 124(18): 187601, 2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32441962

RESUMO

Many graphene moiré superlattices host narrow bands with nonzero valley Chern numbers. We provide analytical and numerical evidence for a robust spin and/or valley polarized insulator at total integer band filling in nearly flat bands of several different moiré materials. In the limit of a perfectly flat band, we present analytical arguments in favor of the ferromagnetic state substantiated by numerical calculations. Further, we numerically evaluate its stability for a finite bandwidth. We provide exact diagonalization results for models appropriate for ABC trilayer graphene aligned with hBN, twisted double bilayer graphene, and twisted bilayer graphene aligned with hBN. We also provide DMRG results for a honeycomb lattice with a quasiflat band and nonzero Chern number, which extend our results to larger system sizes. We find a maximally spin and valley polarized insulator at all integer fillings when the band is sufficiently flat. We also show that interactions may induce effective dispersive terms strong enough to destabilize this state. These results still hold in the case of zero valley Chern number (for example, trivial side of TLG/hBN). We give an intuitive picture based on extended Wannier orbitals, and emphasize the role of the quantum geometry of the band, whose microscopic details may enhance or weaken ferromagnetism in moiré materials.

7.
Phys Rev Lett ; 123(24): 247401, 2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31922878

RESUMO

The robust quantization of observables in units of universal constants is a hallmark of topological phases. We show that chiral higher order topological insulators (HOTIs), bulk insulators with chiral hinge states, present two unusual features related to quantization. First, we show that circular dichroism is quantized to an integer or zero depending on the orientation of the sample. This probe locates the hinge states, and can be used to distinguish different types of chiral HOTIs. Second, we find that the average of the local Chern marker over a single surface, an observable related to the surface Hall conductivity known to be quantized in the infinite slab geometry, is nonuniversal for a finite surface. This is due to a nonuniversal contribution of the hinge states, previously unaccounted for, that distinguishes surfaces of chiral HOTIs from Chern insulators. Our findings are relevant to establish higher order topology in systems such as the axion insulator candidate EuIn_{2}As_{2}, and cold atomic realizations.

8.
Science ; 360(6384): 31-32, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29622642
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...