Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1179857, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37520355

RESUMO

The terrestrial serpentinite-hosted ecosystem known as "The Cedars" is home to a diverse microbial community persisting under highly alkaline (pH ~ 12) and reducing (Eh < -550 mV) conditions. This extreme environment presents particular difficulties for microbial life, and efforts to isolate microorganisms from The Cedars over the past decade have remained challenging. Herein, we report the initial physiological assessment and/or full genomic characterization of three isolates: Paenibacillus sp. Cedars ('Paeni-Cedars'), Alishewanella sp. BS5-314 ('Ali-BS5-314'), and Anaerobacillus sp. CMMVII ('Anaero-CMMVII'). Paeni-Cedars is a Gram-positive, rod-shaped, mesophilic facultative anaerobe that grows between pH 7-10 (minimum pH tested was 7), temperatures 20-40°C, and 0-3% NaCl concentration. The addition of 10-20 mM CaCl2 enhanced growth, and iron reduction was observed in the following order, 2-line ferrihydrite > magnetite > serpentinite ~ chromite ~ hematite. Genome analysis identified genes for flavin-mediated iron reduction and synthesis of a bacillibactin-like, catechol-type siderophore. Ali-BS5-314 is a Gram-negative, rod-shaped, mesophilic, facultative anaerobic alkaliphile that grows between pH 10-12 and temperatures 10-40°C, with limited growth observed 1-5% NaCl. Nitrate is used as a terminal electron acceptor under anaerobic conditions, which was corroborated by genome analysis. The Ali-BS5-314 genome also includes genes for benzoate-like compound metabolism. Anaero-CMMVII remained difficult to cultivate for physiological studies; however, growth was observed between pH 9-12, with the addition of 0.01-1% yeast extract. Anaero-CMMVII is a probable oxygen-tolerant anaerobic alkaliphile with hydrogenotrophic respiration coupled with nitrate reduction, as determined by genome analysis. Based on single-copy genes, ANI, AAI and dDDH analyses, Paeni-Cedars and Ali-BS5-314 are related to other species (P. glucanolyticus and A. aestuarii, respectively), and Anaero-CMMVII represents a new species. The characterization of these three isolates demonstrate the range of ecophysiological adaptations and metabolisms present in serpentinite-hosted ecosystems, including mineral reduction, alkaliphily, and siderophore production.

2.
Microorganisms ; 10(4)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35456869

RESUMO

We have isolated a chlorophyll-d-containing cyanobacterium from the intertidal field site at Moss Beach, on the coast of Central California, USA, where Manning and Strain (1943) originally discovered this far-red chlorophyll. Here, we present the cyanobacterium's environmental description, culturing procedure, pigment composition, ultrastructure, and full genome sequence. Among cultures of far-red cyanobacteria obtained from red algae from the same site, this strain was an epiphyte on a brown macroalgae. Its Qyin vivo absorbance peak is centered at 704-705 nm, the shortest wavelength observed thus far among the various known Acaryochloris strains. Its Chl a/Chl d ratio was 0.01, with Chl d accounting for 99% of the total Chl d and Chl a mass. TEM imagery indicates the absence of phycobilisomes, corroborated by both pigment spectra and genome analysis. The Moss Beach strain codes for only a single set of genes for producing allophycocyanin. Genomic sequencing yielded a 7.25 Mbp circular chromosome and 10 circular plasmids ranging from 16 kbp to 394 kbp. We have determined that this strain shares high similarity with strain S15, an epiphyte of red algae, while its distinct gene complement and ecological niche suggest that this strain could be the closest known relative to the original Chl d source of Manning and Strain (1943). The Moss Beach strain is designated Acaryochloris sp. (marina) strain Moss Beach.

3.
Proc Natl Acad Sci U S A ; 119(11): e2113386119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35254902

RESUMO

SignificancePhosphonates are a class of phosphorus metabolites characterized by a highly stable C-P bond. Phosphonates accumulate to high concentrations in seawater, fuel a large fraction of marine methane production, and serve as a source of phosphorus to microbes inhabiting nutrient-limited regions of the oligotrophic ocean. Here, we show that 15% of all bacterioplankton in the surface ocean have genes phosphonate synthesis and that most belong to the abundant groups Prochlorococcus and SAR11. Genomic and chemical evidence suggests that phosphonates are incorporated into cell-surface phosphonoglycoproteins that may act to mitigate cell mortality by grazing and viral lysis. These results underscore the large global biogeochemical impact of relatively rare but highly expressed traits in numerically abundant groups of marine bacteria.


Assuntos
Organismos Aquáticos/metabolismo , Organofosfonatos/metabolismo , Organismos Aquáticos/genética , Bactérias/genética , Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Transferência Genética Horizontal , Genes Bacterianos , Modelos Biológicos , Prochlorococcus/genética , Prochlorococcus/metabolismo , Característica Quantitativa Herdável , Água do Mar/microbiologia
4.
Environ Sci Technol ; 56(6): 3770-3779, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35213147

RESUMO

Current understanding of dissolved iron (Fe) speciation in the ocean is based on two fundamentally different approaches: electrochemical methods that measure bulk properties of a heterogeneous ligand pool and liquid chromatography mass spectrometry methods that characterize ligands at a molecular level. Here, we describe a method for simultaneously determining Fe-ligand dissociation rate constants (kd) of suites of naturally occurring ligands in seawater by monitoring the exchange of ligand-bound 56Fe with 57Fe using liquid chromatography-inductively coupled mass spectrometry. Values of kd were determined for solutions of ferrichrome and ferrioxamine E. In seawater, the dissociation rate constant of ferrichrome (kd = 10 × 10-8 s-1) was greater than that of ferrioxamine E (kd = 3.6 × 10-8 s-1). The rates for both compounds were over twice as fast in seawater compared with pure water, suggesting that seawater salts accelerate dissociation. Isotope exchange experiments on organic extracts of natural seawater indicated that ligand-binding sites associated with chromatographically unresolved dissolved organic matter exchanged Fe more quickly (kd = 1.8 × 10-5 s-1) than amphibactin siderophores (kd = 2.15 × 10-6 s-1) and an unidentified siderophore with m/z 709 (kd = 9.6 × 10-6 s-1). These findings demonstrate that our approach can bridge molecular-level ligand identification with kinetic and thermodynamic metal-binding properties.


Assuntos
Ferricromo , Sideróforos , Cromatografia Líquida , Ferro/química , Isótopos , Cinética , Ligantes , Espectrometria de Massas , Água do Mar/química , Sideróforos/química
5.
mSphere ; 6(3)2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980670

RESUMO

Interactions between phytoplankton and heterotrophic bacteria fundamentally shape marine ecosystems by controlling primary production, structuring marine food webs, mediating carbon export, and influencing global climate. Phytoplankton-bacterium interactions are facilitated by secreted compounds; however, linking these chemical signals, their mechanisms of action, and their resultant ecological consequences remains a fundamental challenge. The bacterial quorum-sensing signal 2-heptyl-4-quinolone (HHQ) induces immediate, yet reversible, cellular stasis (no cell division or mortality) in the coccolithophore Emiliania huxleyi; however, the mechanism responsible remains unknown. Using transcriptomic and proteomic approaches in combination with diagnostic biochemical and fluorescent cell-based assays, we show that HHQ exposure leads to prolonged S-phase arrest in phytoplankton coincident with the accumulation of DNA damage and a lack of repair despite the induction of the DNA damage response (DDR). While this effect is reversible, HHQ-exposed phytoplankton were also protected from viral mortality, ascribing a new role of quorum-sensing signals in regulating multitrophic interactions. Furthermore, our data demonstrate that in situ measurements of HHQ coincide with areas of enhanced micro- and nanoplankton biomass. Our results suggest bacterial communication signals as emerging players that may be one of the contributing factors that help structure complex microbial communities throughout the ocean.IMPORTANCE Bacteria and phytoplankton form close associations in the ocean that are driven by the exchange of chemical compounds. The bacterial signal 2-heptyl-4-quinolone (HHQ) slows phytoplankton growth; however, the mechanism responsible remains unknown. Here, we show that HHQ exposure leads to the accumulation of DNA damage in phytoplankton and prevents its repair. While this effect is reversible, HHQ-exposed phytoplankton are also relieved of viral mortality, elevating the ecological consequences of this complex interaction. Further results indicate that HHQ may target phytoplankton proteins involved in nucleotide biosynthesis and DNA repair, both of which are crucial targets for viral success. Our results support microbial cues as emerging players in marine ecosystems, providing a new mechanistic framework for how bacterial communication signals mediate interspecies and interkingdom behaviors.


Assuntos
Bactérias/metabolismo , Divisão Celular , Fitoplâncton/fisiologia , Percepção de Quorum , Transdução de Sinais , 4-Quinolonas/metabolismo , Proteínas de Bactérias/genética , Perfilação da Expressão Gênica , Interações Microbianas , Microbiota , Fitoplâncton/genética , Proteômica
7.
MethodsX ; 7: 101033, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32953465

RESUMO

The advanced instrumented GeoMICROBE sleds (Cowen et al., 2012) facilitate the collection of hydrothermal fluids and suspended particles in the subseafloor (basaltic) basement through Circulation Obviation Retrofit Kits (CORKs) installed within boreholes of the Integrated Ocean Drilling Program. The main components of the GeoMICROBE can be converted into a mobile pumping system (MPS) that is installed on the front basket of a submersible or remotely-operated-vehicle (ROV). Here, we provide details of a hydrothermal fluid-trap used on the MPS, through which a gastight sampler can withdraw fluids. We also applied the MPS to demonstrate the value of fixing samples at the seafloor in order to determine redox-sensitive dissolved iron concentrations and speciation measurements. To make the best use of the GeoMICROBE sleds, we describe a miniature and mobile version of the GeoMICROBE sled, which permits rapid turn-over and is relatively easy for preparation and operation. Similar to GeoMICROBE sleds, the Mobile GeoMICROBE (MGM) is capable of collecting fluid samples, filtration of suspended particles, and extraction of organics. We validate this approach by demonstrating the seafloor extraction of hydrophobic organics from a large volume (247L) of hydrothermal fluids.•We describe the design of a hydrothermal fluid-trap for use with a gastight sampler, as well as the use of seafloor fixation, through ROV- or submersible assisted mobile pumping systems.•We describe the design of a Mobile GeoMICROBE (MGM) that enhances large volume hydrothermal fluid sampling, suspended particle filtration, and organic matter extraction on the seafloor.•We provide an example of organic matter extracted and characterized from hydrothermal fluids via a MGM.

8.
Trends Ecol Evol ; 34(11): 1022-1033, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31350054

RESUMO

Global environmental changes are challenging the structure and functioning of ecosystems. However, a mechanistic understanding of how global environmental changes will affect ecosystems is still lacking. The complex and interacting biological and physical processes spanning vast temporal and spatial scales that constitute an ecosystem make this a formidable problem. A unifying framework based on ecological theory, that considers fundamental and realized niches, combined with metabolic, evolutionary, and climate change studies, is needed to provide the mechanistic understanding required to evaluate and forecast the future of marine communities, ecosystems, and their services.


Assuntos
Mudança Climática , Ecossistema , Ecologia
9.
Anal Chim Acta ; 1067: 137-146, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31047145

RESUMO

Carbohydrates are among the most abundant organic molecules in both aquatic and terrestrial ecosystems; however, very few studies have addressed their isotopic signature using compound-specific isotope analysis, which provides additional information on their origin (δ13C) and fate (Δ14C). In this study, semi-preparative liquid chromatography with refractive index detection (HPLC-RI) was employed to produce pure carbohydrate targets for subsequent offline δ13C and Δ14C isotopic analysis. δ13C analysis was performed by elemental analyzer-isotope ratio mass spectrometer (EA-IRMS) whereas Δ14C analysis was performed by an innovative measurement procedure based on the direct combustion of the isolated fractions using an elemental analyzer coupled to the gas source of a mini carbon dating system (AixMICADAS). In general, four successive purifications with Na+, Ca2+, Pb2+, and Ca2+ cation-exchange columns were sufficient to produce pure carbohydrates. These carbohydrates were subsequently identified using mass spectrometry by comparing their mass spectra with those of authentic standards. The applicability of the proposed method was tested on two different environmental samples comprising marine particulate organic matter (POM) and total suspended atmospheric particles (TSP). The obtained results revealed that for the marine POM sample, the δ13C values of the individual carbohydrates ranged from -18.5 to -16.8‰, except for levoglucosan and mannosan, which presented values of -27.2 and -26.2‰, respectively. For the TSP sample, the δ13C values ranged from -26.4 to -25.0‰. The galactose and glucose Δ14C values were 19 and 43‰, respectively, for the POM sample. On the other hand, the levoglucosan radiocarbon value was 33‰ for the TSP sample. These results suggest that these carbohydrates exhibit a modern age in both of these samples. Radiocarbon HPLC collection window blanks, measured after the addition of phthalic acid (14C free blank), ranged from -988 to -986‰ for the abovementioned compounds, indicating a very small background isotopic influence from the whole purification procedure. Overall, the proposed method does not require derivatization steps, produces extremely low blanks, and may be applied to different types of environmental samples.

10.
Environ Microbiol ; 21(7): 2402-2414, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30972938

RESUMO

In tropical and subtropical oceanic surface waters phosphate scarcity can limit microbial productivity. However, these environments also have bioavailable forms of phosphorus incorporated into dissolved organic matter (DOM) that microbes with the necessary transport and hydrolysis metabolic pathways can access to supplement their phosphorus requirements. In this study we evaluated how the environment shapes the abundance and taxonomic distribution of the bacterial carbon-phosphorus (C-P) lyase pathway, an enzyme complex evolved to extract phosphate from phosphonates. Phosphonates are organophosphorus compounds characterized by a highly stable C-P bond and are enriched in marine DOM. Similar to other known bacterial adaptions to low phosphate environments, C-P lyase was found to become more prevalent as phosphate concentrations decreased. C-P lyase was particularly enriched in the Mediterranean Sea and North Atlantic Ocean, two regions that feature sustained periods of phosphate depletion. In these regions, C-P lyase was prevalent in several lineages of Alphaproteobacteria (Pelagibacter, SAR116, Roseobacter and Rhodospirillales), Gammaproteobacteria, and Actinobacteria. The global scope of this analysis supports previous studies that infer phosphonate catabolism via C-P lyase is an important adaptive strategy implemented by bacteria to alleviate phosphate limitation and expands the known geographic extent and taxonomic affiliation of this metabolic pathway in the ocean.


Assuntos
Actinobacteria/metabolismo , Liases/metabolismo , Fosfatos/metabolismo , Proteobactérias/metabolismo , Roseobacter/metabolismo , Actinobacteria/classificação , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Oceano Atlântico , Carbono/metabolismo , Liases/genética , Mar Mediterrâneo , Organofosfonatos/metabolismo , Compostos Organofosforados/metabolismo , Fosfatos/análise , Proteobactérias/classificação , Proteobactérias/genética , Proteobactérias/isolamento & purificação , Roseobacter/classificação , Roseobacter/genética , Roseobacter/isolamento & purificação , Água do Mar/análise , Água do Mar/microbiologia
11.
Nat Commun ; 9(1): 5179, 2018 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-30518752

RESUMO

Sunlight is the dominant control on phytoplankton biosynthetic activity, and darkness deprives them of their primary external energy source. Changes in the biochemical composition of phytoplankton communities over diel light cycles and attendant consequences for carbon and energy flux in environments remain poorly elucidated. Here we use lipidomic data from the North Pacific subtropical gyre to show that biosynthesis of energy-rich triacylglycerols (TAGs) by eukaryotic nanophytoplankton during the day and their subsequent consumption at night drives a large and previously uncharacterized daily carbon cycle. Diel oscillations in TAG concentration comprise 23 ± 11% of primary production by eukaryotic nanophytoplankton representing a global flux of about 2.4 Pg C yr-1. Metatranscriptomic analyses of genes required for TAG biosynthesis indicate that haptophytes and dinoflagellates are active members in TAG production. Estimates suggest that these organisms could contain as much as 40% more calories at sunset than at sunrise due to TAG production.


Assuntos
Dinoflagellida/metabolismo , Dinoflagellida/efeitos da radiação , Haptófitas/metabolismo , Haptófitas/efeitos da radiação , Fitoplâncton/metabolismo , Fitoplâncton/efeitos da radiação , Triglicerídeos/biossíntese , Carbono/metabolismo , Ciclo do Carbono , Dinoflagellida/genética , Dinoflagellida/crescimento & desenvolvimento , Ecossistema , Haptófitas/genética , Haptófitas/crescimento & desenvolvimento , Oceanos e Mares , Fitoplâncton/crescimento & desenvolvimento , Luz Solar
12.
Front Microbiol ; 8: 1786, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29085339

RESUMO

Semi-labile dissolved organic matter (DOM) accumulates in surface waters of the oligotrophic ocean gyres and turns over on seasonal to annual timescales. This reservoir of DOM represents an important source of carbon, energy, and nutrients to marine microbial communities but the identity of the microorganisms and the biochemical pathways underlying the cycling of DOM remain largely uncharacterized. In this study we describe bacteria isolated from the North Pacific Subtropical Gyre (NPSG) near Hawaii that are able to degrade phosphonates associated with high molecular weight dissolved organic matter (HMWDOM), which represents a large fraction of semi-labile DOM. We amended dilution-to-extinction cultures with HMWDOM collected from NPSG surface waters and with purified HMWDOM enriched with polysaccharides bearing alkylphosphonate esters. The HMWDOM-amended cultures were enriched in Roseobacter isolates closely related to Sulfitobacter and close relatives of hydrocarbon-degrading bacteria of the Oceanospirillaceae family, many of which encoded phosphonate degradation pathways. Sulfitobacter cultures encoding C-P lyase were able to catabolize methylphosphonate and 2-hydroxyethylphosphonate, as well as the esters of these phosphonates found in native HMWDOM polysaccharides to acquire phosphorus while producing methane and ethylene, respectively. Conversely, growth of these isolates on HMWDOM polysaccharides as carbon source did not support robust increases in cell yields, suggesting that the constituent carbohydrates in HMWDOM were not readily available to these individual isolates. We postulate that the complete remineralization of HMWDOM polysaccharides requires more complex microbial inter-species interactions. The degradation of phosphonate esters and other common substitutions in marine polysaccharides may be key steps in the turnover of marine DOM.

13.
Front Microbiol ; 8: 2117, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29163409

RESUMO

Bacterial consumption of dissolved organic matter (DOM) drives much of the movement of carbon through the oceanic food web and the global carbon cycle. Understanding complex interactions between bacteria and marine DOM remains an important challenge. We tested the hypothesis that bacterial growth and community succession would respond differently to DOM additions due to seasonal changes in phytoplankton abundance in the environment. Four mesocosm experiments were conducted that spanned the spring transitional period (August-December 2013) in surface waters of the Western Antarctic Peninsula (WAP). Each mesocosm consisted of nearshore surface seawater (50 L) incubated in the laboratory for 10 days. The addition of DOM, in the form of cell-free exudates extracted from Thalassiosira weissflogii diatom cultures led to changes in bacterial abundance, production, and community composition. The timing of each mesocosm experiment (i.e., late winter vs. late spring) influenced the magnitude and direction of bacterial changes. For example, the same DOM treatment applied at different times during the season resulted in different levels of bacterial production and different bacterial community composition. There was a mid-season shift from Collwelliaceae to Polaribacter having the greatest relative abundance after incubation. This shift corresponded to a modest but significant increase in the initial relative abundance of Polaribacter in the nearshore seawater used to set up experiments. This finding supports a new hypothesis that starting community composition, through priority effects, influenced the trajectory of community succession in response to DOM addition. As strong inter-annual variability and long-term climate change may shift the timing of WAP phytoplankton blooms, and the corresponding production of DOM exudates, this study suggests a mechanism by which different seasonal successional patterns in bacterial communities could occur.

14.
Proc Natl Acad Sci U S A ; 113(50): 14237-14242, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27911777

RESUMO

Nearly all iron dissolved in the ocean is complexed by strong organic ligands of unknown composition. The effect of ligand composition on microbial iron acquisition is poorly understood, but amendment experiments using model ligands show they can facilitate or impede iron uptake depending on their identity. Here we show that siderophores, organic compounds synthesized by microbes to facilitate iron uptake, are a dynamic component of the marine ligand pool in the eastern tropical Pacific Ocean. Siderophore concentrations in iron-deficient waters averaged 9 pM, up to fivefold higher than in iron-rich coastal and nutrient-depleted oligotrophic waters, and were dominated by amphibactins, amphiphilic siderophores with cell membrane affinity. Phylogenetic analysis of amphibactin biosynthetic genes suggests that the ability to produce amphibactins has transferred horizontally across multiple Gammaproteobacteria, potentially driven by pressures to compete for iron. In coastal and oligotrophic regions of the eastern Pacific Ocean, amphibactins were replaced with lower concentrations (1-2 pM) of hydrophilic ferrioxamine siderophores. Our results suggest that organic ligand composition changes across the surface ocean in response to environmental pressures. Hydrophilic siderophores are predominantly found across regions of the ocean where iron is not expected to be the limiting nutrient for the microbial community at large. However, in regions with intense competition for iron, some microbes optimize iron acquisition by producing siderophores that minimize diffusive losses to the environment. These siderophores affect iron bioavailability and thus may be an important component of the marine iron cycle.


Assuntos
Ferro/metabolismo , Água do Mar/análise , Água do Mar/microbiologia , Sideróforos/metabolismo , Adaptação Fisiológica , Disponibilidade Biológica , Gammaproteobacteria/classificação , Gammaproteobacteria/genética , Gammaproteobacteria/metabolismo , Genes Bacterianos , Ferro/farmacocinética , Ligantes , Oceano Pacífico , Filogenia , Microbiologia da Água
15.
mBio ; 7(6)2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27879330

RESUMO

The members of the OM43 clade of Betaproteobacteria are abundant coastal methylotrophs with a range of carbon-utilizing capabilities. However, their underlying transcriptional and metabolic responses to shifting conditions or different carbon substrates remain poorly understood. We examined the transcriptional dynamics of OM43 isolate NB0046 subjected to various inorganic nutrient, vitamin, and carbon substrate regimes over different growth phases to (i) develop a quantitative model of its mRNA content; (ii) identify transcriptional markers of physiological activity, nutritional state, and carbon and energy utilization; and (iii) identify pathways involved in methanol or naturally occurring dissolved organic matter (DOM) metabolism. Quantitative transcriptomics, achieved through addition of internal RNA standards, allowed for analyses on a transcripts-per-cell scale. This streamlined bacterium exhibited substantial shifts in total mRNA content (ranging from 1,800 to 17 transcripts cell-1 in the exponential and deep stationary phases, respectively) and gene-specific transcript abundances (>1,000-fold increases in some cases), depending on the growth phase and nutrient conditions. Carbon metabolism genes exhibited substantial dynamics, including those for ribulose monophosphate, tricarboxylic acid (TCA), and proteorhodopsin, as well as methanol dehydrogenase (xoxF), which, while always the most abundant transcript, increased from 5 to 120 transcripts cell-1 when cultures were nutrient and vitamin amended. In the DOM treatment, upregulation of TCA cycle, methylcitrate cycle, vitamin, and organic phosphorus genes suggested a metabolic route for this complex mixture of carbon substrates. The genome-wide inventory of transcript abundances produced here provides insight into a streamlined marine bacterium's regulation of carbon metabolism and energy flow, providing benchmarks for evaluating the activity of OM43 populations in situ IMPORTANCE: Bacteria exert a substantial influence on marine organic matter flux, yet the carbon components targeted by specific bacterial groups, as well as how those groups' metabolic activities change under different conditions, are not well understood. Gene expression studies of model organisms can identify these responses under defined conditions, which can then be compared to environmental transcriptomes to elucidate in situ activities. This integration, however, is limited by the data's relative nature. Here, we report the fully quantitative transcriptome of a marine bacterium, providing a genome-wide survey of cellular transcript abundances and how they change with different states of growth, nutrient conditions, and carbon substrates. The results revealed the dynamic metabolic strategies this methylotroph has for processing both simple one-carbon compounds and the complex multicarbon substrates of naturally derived marine organic matter and provide baseline quantitative data for identifying their in situ activities and impact on the marine carbon cycle.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Organismos Aquáticos/crescimento & desenvolvimento , Betaproteobacteria/efeitos dos fármacos , Betaproteobacteria/crescimento & desenvolvimento , Carbono/metabolismo , Perfilação da Expressão Gênica , Compostos Orgânicos/metabolismo , Redes e Vias Metabólicas
16.
Microbiologyopen ; 5(5): 846-855, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27168070

RESUMO

By taking advantage of the ballistoconidium-forming capabilities of members of the genus Sporobolomyces, we recovered ten isolates from deciduous tree leaves collected from Vermont and Washington, USA. Analysis of the small subunit ribosomal RNA gene and the D1/D2 domain of the large subunit ribosomal RNA gene indicate that all isolates are closely related. Further analysis of their physiological attributes shows that all were similarly pigmented yeasts capable of growth under aerobic and microaerophilic conditions, all were tolerant of repeated freezing and thawing, minimally tolerant to elevated temperature and desiccation, and capable of growth in liquid or on solid media containing pectin or galacturonic acid. The scientific literature on ballistoconidium-forming yeasts indicates that they are a polyphyletic group. Isolates of Sporobolomyces from two geographically separated sites show almost identical phenotypic and physiological characteristics and a monophyly with a broad group of differently named Sporobolomyces/Sporidiobolus species based on both small subunit ribosomal RNA (SSU rRNA) and D1/D2 domains of the LSU rRNA gene sequences.


Assuntos
Basidiomycota , Folhas de Planta/microbiologia , RNA Fúngico/genética , RNA Ribossômico 5S/genética , Árvores/microbiologia , Sequência de Bases , Basidiomycota/classificação , Basidiomycota/genética , Basidiomycota/isolamento & purificação , Basidiomycota/fisiologia , Temperatura Baixa , Dessecação , Filogenia , Reação em Cadeia da Polimerase , Análise de Sequência de RNA , Vermont , Washington
17.
Proc Natl Acad Sci U S A ; 113(12): 3143-51, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26951682

RESUMO

Dissolved organic matter (DOM) in the oceans is one of the largest pools of reduced carbon on Earth, comparable in size to the atmospheric CO2 reservoir. A vast number of compounds are present in DOM, and they play important roles in all major element cycles, contribute to the storage of atmospheric CO2 in the ocean, support marine ecosystems, and facilitate interactions between organisms. At the heart of the DOM cycle lie molecular-level relationships between the individual compounds in DOM and the members of the ocean microbiome that produce and consume them. In the past, these connections have eluded clear definition because of the sheer numerical complexity of both DOM molecules and microorganisms. Emerging tools in analytical chemistry, microbiology, and informatics are breaking down the barriers to a fuller appreciation of these connections. Here we highlight questions being addressed using recent methodological and technological developments in those fields and consider how these advances are transforming our understanding of some of the most important reactions of the marine carbon cycle.


Assuntos
Ciclo do Carbono , Carbono/química , Geologia/métodos , Biologia Marinha/métodos , Água do Mar/análise , Carbono/metabolismo , Ecossistema , Ciência da Informação , Microbiota , Oceanos e Mares , Compostos Orgânicos/análise , Fitoplâncton/metabolismo , Solubilidade , Movimentos da Água
18.
ISME J ; 9(12): 2725-39, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25978545

RESUMO

The role of bacterioplankton in the cycling of marine dissolved organic matter (DOM) is central to the carbon and energy balance in the ocean, yet there are few model organisms available to investigate the genes, metabolic pathways, and biochemical mechanisms involved in the degradation of this globally important carbon pool. To obtain microbial isolates capable of degrading semi-labile DOM for growth, we conducted dilution to extinction cultivation experiments using seawater enriched with high molecular weight (HMW) DOM. In total, 93 isolates were obtained. Amendments using HMW DOM to increase the dissolved organic carbon concentration 4x (280 µM) or 10x (700 µM) the ocean surface water concentrations yielded positive growth in 4-6% of replicate dilutions, whereas <1% scored positive for growth in non-DOM-amended controls. The majority (71%) of isolates displayed a distinct increase in cell yields when grown in increasing concentrations of HMW DOM. Whole-genome sequencing was used to screen the culture collection for purity and to determine the phylogenetic identity of the isolates. Eleven percent of the isolates belonged to the gammaproteobacteria including Alteromonadales (the SAR92 clade) and Vibrio. Surprisingly, 85% of isolates belonged to the methylotrophic OM43 clade of betaproteobacteria, bacteria thought to metabolically specialize in degrading C1 compounds. Growth of these isolates on methanol confirmed their methylotrophic phenotype. Our results indicate that dilution to extinction cultivation enriched with natural sources of organic substrates has a potential to reveal the previously unsuspected relationships between naturally occurring organic nutrients and the microorganisms that consume them.


Assuntos
Bactérias/metabolismo , Metanol/metabolismo , Compostos Orgânicos/metabolismo , Água do Mar/microbiologia , Processos Autotróficos , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Carbono/metabolismo , Meios de Cultura/química , Meios de Cultura/metabolismo , Dados de Sequência Molecular , Peso Molecular , Compostos Orgânicos/química , Filogenia , Água do Mar/química
19.
Metallomics ; 7(5): 877-84, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25786191

RESUMO

Siderophores are thought to play an important role in iron cycling in the ocean, but relatively few marine siderophores have been identified. Sensitive, high throughput methods hold promise for expediting the discovery and characterization of new siderophores produced by marine microbes. We developed a methodology for siderophore characterization that combines liquid chromatography (LC) inductively coupled plasma mass spectrometry (ICPMS) with high resolution electrospray ionization mass spectrometry (ESIMS). To demonstrate this approach, we investigated siderophore production by the marine cyanobacteria Synechococcus sp. PCC 7002. Three hydroxamate siderophores, synechobactin A-C, have been previously isolated and characterized from this strain. These compounds consist of an iron binding head group attached to a fatty acid side chain of variable length (C12, C10, and C8 respectively). In this study, we detected six iron-containing compounds in Synechococcus sp. PCC 7002 media by LC-ICPMS. To identify the molecular ions of these siderophores, we aligned the chromatographic retention times of peaks from the LC-ICPMS chromatogram with features detected from LC-ESIMS spectra using an algorithm designed to recognize metal isotope patterns. Three of these compounds corresponded to synechobactins A (614 m/z), B (586 m/z), and C (558 m/z). The MS2 spectra of these compounds revealed diagnostic synechobactin fragmentation patterns which were used to confirm the identity of the three unknown compounds (600, 628, and 642 m/z) as new members of the synechobactin suite with side chain lengths of 11, 13, and 14 carbons. These results demonstrate the potential of combined LCMS techniques for the identification of novel iron-organic complexes.


Assuntos
Sideróforos/análise , Synechococcus/química , Cromatografia Líquida de Alta Pressão , Sideróforos/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Synechococcus/metabolismo
20.
Proc Natl Acad Sci U S A ; 111(47): 16706-11, 2014 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-25385632

RESUMO

Marine dissolved organic carbon (DOC) is a large (660 Pg C) reactive carbon reservoir that mediates the oceanic microbial food web and interacts with climate on both short and long timescales. Carbon isotopic content provides information on the DOC source via δ(13)C and age via Δ(14)C. Bulk isotope measurements suggest a microbially sourced DOC reservoir with two distinct components of differing radiocarbon age. However, such measurements cannot determine internal dynamics and fluxes. Here we analyze serial oxidation experiments to quantify the isotopic diversity of DOC at an oligotrophic site in the central Pacific Ocean. Our results show diversity in both stable and radio isotopes at all depths, confirming DOC cycling hidden within bulk analyses. We confirm the presence of isotopically enriched, modern DOC cocycling with an isotopically depleted older fraction in the upper ocean. However, our results show that up to 30% of the deep DOC reservoir is modern and supported by a 1 Pg/y carbon flux, which is 10 times higher than inferred from bulk isotope measurements. Isotopically depleted material turns over at an apparent time scale of 30,000 y, which is far slower than indicated by bulk isotope measurements. These results are consistent with global DOC measurements and explain both the fluctuations in deep DOC concentration and the anomalous radiocarbon values of DOC in the Southern Ocean. Collectively these results provide an unprecedented view of the ways in which DOC moves through the marine carbon cycle.


Assuntos
Carbono/análise , Oceanos e Mares , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...