Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 11(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35567131

RESUMO

Plant stress induced by high temperature is a problem in wide areas of different regions in the world. The trend of global warming is going to enhance the effects of heat stress on crops in many cultivation areas. Heat stress impairs the stability of cell membranes and many biological processes involving both primary and secondary metabolism. Biostimulants are innovative agronomical tools that can be used as a strategy to counteract the detrimental effect of abiotic stresses, including heat stress. In this work, two biostimulants based on Ascophyllum nodosum extracts (named Phylgreen) and based on animal L-α amino acids (named Delfan Plus) were applied as priming treatments to Arabidopsis thaliana plants subjected to heat stress exposure. Plants at the vegetative stage were treated with biostimulants 12 h before high temperature exposure, which consisted of maintaining the plants at 37 ± 1 °C for 4 h. Transcriptional profiles, physiological, and biochemical analyses were performed to understand the mode of action of the biostimulants in protecting the plants exposed to short-term heat stress. At a physiological level, chlorophyll, chlorophyll a fluorescence, phenolic index, total anthocyanins, reactive oxygen species (ROS) were measured, and significant variations were observed immediately after stress. Both biostimulants were able to reduce the oxidative damage in leaves and cell membrane. Transcriptomic data revealed that upregulated genes were 626 in Phylgreen and 365 in Delfan Plus, while downregulated genes were 295 in Phylgreen and 312 in Delfan Plus. Bioinformatic analysis showed that the biostimulants protected the plants from heat stress by activating specific heat shock proteins (HPS), antioxidant systems, and ROS scavengers. The results revealed that the biostimulants effectively induced the activation of heat stress-associated genes belonging to different transcription factors and HSP families. Among the heat shock proteins, the most important was the AtHSP17 family and in particular, those influenced by treatments were AtHPS17.4 and AtHPS17.6A, B, showing the most relevant changes.

2.
Plant Physiol ; 164(3): 1237-49, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24406791

RESUMO

A transcriptomic approach has been used to identify genes predominantly expressed in maize (Zea mays) scutellum during maturation. One of the identified genes is oil body associated protein1 (obap1), which is transcribed during seed maturation predominantly in the scutellum, and its expression decreases rapidly after germination. Proteins similar to OBAP1 are present in all plants, including primitive plants and mosses, and in some fungi and bacteria. In plants, obap genes are divided in two subfamilies. Arabidopsis (Arabidopsis thaliana) genome contains five genes coding for OBAP proteins. Arabidopsis OBAP1a protein is accumulated during seed maturation and disappears after germination. Agroinfiltration of tobacco (Nicotiana benthamiana) epidermal leaf cells with fusions of OBAP1 to yellow fluorescent protein and immunogold labeling of embryo transmission electron microscopy sections showed that OBAP1 protein is mainly localized in the surface of the oil bodies. OBAP1 protein was detected in the oil body cellular fraction of Arabidopsis embryos. Deletion analyses demonstrate that the most hydrophilic part of the protein is responsible for the oil body localization, which suggests an indirect interaction of OBAP1 with other proteins in the oil body surface. An Arabidopsis mutant with a transfer DNA inserted in the second exon of the obap1a gene and an RNA interference line against the same gene showed a decrease in the germination rate, a decrease in seed oil content, and changes in fatty acid composition, and their embryos have few, big, and irregular oil bodies compared with the wild type. Taken together, our findings suggest that OBAP1 protein is involved in the stability of oil bodies.


Assuntos
Arabidopsis/metabolismo , Estruturas Citoplasmáticas/metabolismo , Evolução Molecular , Proteínas de Plantas/metabolismo , Zea mays/metabolismo , Arabidopsis/genética , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/metabolismo , Western Blotting , Sequência Conservada , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Mutagênese Insercional/genética , Tamanho do Órgão , Proteínas de Plantas/genética , Transporte Proteico , Interferência de RNA , Sementes/metabolismo , Sementes/ultraestrutura , Frações Subcelulares/metabolismo , Zea mays/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...