Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 47(17): 9132-9143, 2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31329989

RESUMO

Poly(ADP-ribose) polymerases (PARPs) facilitate the repair of DNA single-strand breaks (SSBs). When PARPs are inhibited, unrepaired SSBs colliding with replication forks give rise to cytotoxic double-strand breaks. These are normally rescued by homologous recombination (HR), but, in cells with suboptimal HR, PARP inhibition leads to genomic instability and cell death, a phenomenon currently exploited in the therapy of ovarian cancers in BRCA1/2 mutation carriers. In spite of their promise, resistance to PARP inhibitors (PARPis) has already emerged. In order to identify the possible underlying causes of the resistance, we set out to identify the endogenous source of DNA damage that activates PARPs. We argued that if the toxicity of PARPis is indeed caused by unrepaired SSBs, these breaks must arise spontaneously, because PARPis are used as single agents. We now show that a significant contributor to PARPi toxicity is oxygen metabolism. While BRCA1-depleted or -mutated cells were hypersensitive to the clinically approved PARPi olaparib, its toxicity was significantly attenuated by depletion of OGG1 or MYH DNA glycosylases, as well as by treatment with reactive oxygen species scavengers, growth under hypoxic conditions or chemical OGG1 inhibition. Thus, clinical resistance to PARPi therapy may emerge simply through reduced efficiency of oxidative damage repair.


Assuntos
Proteína BRCA1/genética , DNA Glicosilases/genética , Neoplasias Ovarianas/tratamento farmacológico , Poli(ADP-Ribose) Polimerases/genética , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Simples/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , DNA Glicosilases/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Recombinação Homóloga/efeitos dos fármacos , Recombinação Homóloga/genética , Humanos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Oxirredução/efeitos dos fármacos , Ftalazinas/efeitos adversos , Ftalazinas/farmacologia , Piperazinas/efeitos adversos , Piperazinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Mutações Sintéticas Letais/genética
2.
J Biol Chem ; 290(16): 9986-99, 2015 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-25694431

RESUMO

Replicative DNA polymerases are high fidelity enzymes that misincorporate nucleotides into nascent DNA with a frequency lower than [1/10(5)], and this precision is improved to about [1/10(7)] by their proofreading activity. Because this fidelity is insufficient to replicate most genomes without error, nature evolved postreplicative mismatch repair (MMR), which improves the fidelity of DNA replication by up to 3 orders of magnitude through correcting biosynthetic errors that escaped proofreading. MMR must be able to recognize non-Watson-Crick base pairs and excise the misincorporated nucleotides from the nascent DNA strand, which carries by definition the erroneous genetic information. In eukaryotes, MMR is believed to be directed to the nascent strand by preexisting discontinuities such as gaps between Okazaki fragments in the lagging strand or breaks in the leading strand generated by the mismatch-activated endonuclease of the MutL homologs PMS1 in yeast and PMS2 in vertebrates. We recently demonstrated that the eukaryotic MMR machinery can make use also of strand breaks arising during excision of uracils or ribonucleotides from DNA. We now show that intermediates of MutY homolog-dependent excision of adenines mispaired with 8-oxoguanine (G(O)) also act as MMR initiation sites in extracts of human cells or Xenopus laevis eggs. Unexpectedly, G(O)/C pairs were not processed in these extracts and failed to affect MMR directionality, but extracts supplemented with exogenous 8-oxoguanine DNA glycosylase (OGG1) did so. Because OGG1-mediated excision of G(O) might misdirect MMR to the template strand, our findings suggest that OGG1 activity might be inhibited during MMR.


Assuntos
Pareamento Incorreto de Bases , DNA Glicosilases/genética , Reparo de Erro de Pareamento de DNA , Guanina/análogos & derivados , Purinas/metabolismo , Xenopus laevis/genética , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Animais , Sequência de Bases , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , DNA/química , DNA/metabolismo , Dano ao DNA , DNA Glicosilases/metabolismo , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Replicação do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Feminino , Guanina/metabolismo , Guanina/farmacologia , Células HCT116 , Humanos , Endonuclease PMS2 de Reparo de Erro de Pareamento , Dados de Sequência Molecular , Proteínas MutL , Oócitos/citologia , Oócitos/metabolismo , Oxirredução , Purinas/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Xenopus laevis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA