Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 313: 137633, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36565761

RESUMO

Humans are ubiquitously exposed to endocrine disrupting chemicals (EDCs), substances that interfere with endogenous hormonal signaling. Exposure during early development is of particular concern due to the programming role of hormones during this period. A previous epidemiological study has shown association between prenatal co-exposure to 8 EDCs (Mixture N1) and language delay in children, suggesting an effect of this mixture on neurodevelopment. Furthermore, in utero exposure to Mixture N1 altered gene expression and behavior in adult mice. In this study, we investigated whether epigenetic mechanisms could underlie the long term effects of Mixture N1 on gene expression and behavior. To this end, we analyzed DNA methylation at regulatory regions of genes whose expression was affected by Mixture N1 in the hippocampus of in utero exposed mice using bisulfite-pyrosequencing. We show that Mixture N1 decreases DNA methylation in males at three genes that are part of the hypothalamus-pituitary-adrenal (HPA) axis: Nr3c1, Nr3c2, and Crhr1, coding for the glucocorticoid receptor, the mineralocorticoid receptor, and the corticotropin releasing hormone receptor 1, respectively. Furthermore, we show that the decrease in Nr3c1 methylation correlates with increased gene expression, and that Nr3c1, Nr3c2, and Crhr1 methylation correlates with hyperactivity and reduction in social behavior. These findings indicate that an EDC mixture corresponding to a human exposure scenario induces epigenetic changes, and thus programming effects, on the HPA axis that are reflected in the behavioral phenotypes of the adult male offspring.


Assuntos
Disruptores Endócrinos , Efeitos Tardios da Exposição Pré-Natal , Feminino , Gravidez , Adulto , Criança , Humanos , Masculino , Camundongos , Animais , Metilação de DNA , Disruptores Endócrinos/metabolismo , Sistema Hipotálamo-Hipofisário , Sistema Hipófise-Suprarrenal , Hipocampo/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo
2.
Best Pract Res Clin Endocrinol Metab ; 35(5): 101512, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34266749

RESUMO

Phthalates, widely used as plasticizers, are contained in many everyday products. Human biomonitoring studies detect their presence in biological fluids of a large part of the population worldwide. Maternal exposure during pregnancy has been related with aberrations in the reproductive growth of male infants. Rodent studies show that gestational exposure to single phthalates elicits reproductive toxicity in both sexes. Early aberrations include inhibition of gonadal sex determining gene expression and steroidogenesis, histopathology, and disturbed gametogenesis, leading later in life to dysfunctions in sperm production and oocyte reserves. Animal studies of in utero exposure to mixtures of phthalates, better mimicking human exposures, revealed analogous reproductive dysfunctions with the single compounds, but also indicated the combined actions and cumulative effects exerted by these chemicals. Further understanding the underlying mechanisms and the species differences in phthalate-induced reproductive toxicity will help to improve the risk assessment for human exposure to these toxicants.


Assuntos
Ácidos Ftálicos , Roedores , Animais , Feminino , Masculino , Exposição Materna/efeitos adversos , Ácidos Ftálicos/toxicidade , Gravidez , Reprodução
3.
Sci Rep ; 10(1): 9367, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32518293

RESUMO

Accumulating evidence suggests that gestational exposure to endocrine disrupting chemicals (EDCs) may interfere with normal brain development and predispose for later dysfunctions. The current study focuses on the exposure impact of mixtures of EDCs that better mimics the real-life situation. We herein describe a mixture of phthalates, pesticides and bisphenol A (mixture N1) detected in pregnant women of the SELMA cohort and associated with language delay in their children. To study the long-term impact of developmental exposure to N1 on brain physiology and behavior we administered this mixture to mice throughout gestation at doses 0×, 0.5×, 10×, 100× and 500× the geometric mean of SELMA mothers' concentrations, and examined their offspring in adulthood. Mixture N1 exposure increased active coping during swimming stress in both sexes, increased locomotion and reduced social interaction in male progeny. The expression of corticosterone receptors, their regulator Fkbp5, corticotropin releasing hormone and its receptor, oxytocin and its receptor, estrogen receptor beta, serotonin receptors (Htr1a, Htr2a) and glutamate receptor subunit Grin2b, were modified in the limbic system of adult animals, in a region-specific, sexually-dimorphic and experience-dependent manner. Principal component analysis revealed gene clusters associated with the observed behavioral responses, mostly related to the stress axis. This integration of epidemiology-based data with an experimental model increases the evidence that prenatal exposure to EDC mixtures impacts later life brain functions.


Assuntos
Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Disruptores Endócrinos/toxicidade , Poluentes Ambientais/toxicidade , Transcrição Gênica/efeitos dos fármacos , Glândulas Suprarrenais/efeitos dos fármacos , Glândulas Suprarrenais/crescimento & desenvolvimento , Glândulas Suprarrenais/metabolismo , Animais , Feminino , Hormônios/metabolismo , Masculino , Tamanho do Órgão/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos
4.
Physiol Behav ; 215: 112791, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31870943

RESUMO

Exposure to early life stress affects the development and function of the brain and when followed by adversities in adulthood, the negative effects of stress are enhanced. Microglia has been proposed as a potential mediator of this phenomenon. In the present study, we investigated the long-term effects of mild early life stress, the consequences of a stressor in adulthood as well as their interaction on microglial and cytokine (PPARγ, IL-1ß and TNFα) levels in the brain of adult male rats. As an early life stress we used a model of maternal neglect, in which the dam is present but non-accessible to the pup for 15 min during postnatal days 10-13; as a stressor in adulthood we exposed animals to chronic social defeat (CSD) for 3 weeks. We determined in the hippocampus, prefrontal cortex and amygdala, the number of Iba-1+ microglial cells, the number of PPARγ+ cells as well as the relative expression of PPARγ, IL-1ß and TNFα mRNA by qPCR. Following exposure to CSD, the number of Iba-1+ cells was increased in the hippocampus and the prefrontal cortex of adult animals exposed to mild early life stress, while in the absence of CSD no such difference was observed. Moreover, following CSD PPARγ levels were increased in the hippocampus of adult males exposed as neonates to "maternal neglect". Our findings support the notion that early life stress, even a mild one, primes microglia and enhances its reactivity to a second stressful event, later in life, in accord with the "two-hit" hypothesis.


Assuntos
Química Encefálica , Encéfalo/patologia , Citocinas/metabolismo , Microglia/patologia , Angústia Psicológica , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Criança , Maus-Tratos Infantis/psicologia , Humanos , Interleucina-1beta/metabolismo , Masculino , Privação Materna , Aprendizagem em Labirinto , Proteínas dos Microfilamentos/metabolismo , PPAR gama/metabolismo , Ratos , Derrota Social , Fator de Necrose Tumoral alfa/metabolismo
5.
Sci Rep ; 9(1): 6424, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31015488

RESUMO

The increasing concern for the reproductive toxicity of abundantly used phthalates requires reliable tools for exposure risk assessment to mixtures of chemicals, based on real life human exposure and disorder-associated epidemiological evidence. We herein used a mixture of four phthalate monoesters (33% mono-butyl phthalate, 16% mono-benzyl phthalate, 21% mono-ethyl hexyl phthalate, and 30% mono-isononyl phthalate), detected in 1st trimester urine of 194 pregnant women and identified as bad actors for a shorter anogenital distance (AGD) in their baby boys. Mice were treated with 0, 0.26, 2.6 and 13 mg/kg/d of the mixture, corresponding to 0x, 10x, 100x, 500x levels detected in the pregnant women. Adverse outcomes detected in the reproductive system of the offspring in pre-puberty and adulthood included reduced AGD index and gonadal weight, changes in gonadal histology and altered expression of key regulators of gonadal growth and steroidogenesis. Most aberrations were apparent in both sexes, though more pronounced in males, and exhibited a non-monotonic pattern. The phthalate mixture directly affected expression of steroidogenesis as demonstrated in a relevant in vitro model. The detected adversities at exposures close to the levels detected in pregnant women, raise concern on the existing safety limits for early-life human exposures and emphasizes the need for re-evaluation of the exposure risk.


Assuntos
Poluentes Ambientais/toxicidade , Expressão Gênica/efeitos dos fármacos , Exposição Materna , Ovário/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Testículo/efeitos dos fármacos , Animais , Aromatase/genética , Aromatase/metabolismo , Dibutilftalato/toxicidade , Dietilexilftalato/análogos & derivados , Dietilexilftalato/toxicidade , Estradiol/sangue , Feminino , Proteína Forkhead Box L2/genética , Proteína Forkhead Box L2/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tamanho do Órgão/efeitos dos fármacos , Ovário/metabolismo , Ovário/fisiopatologia , Ácidos Ftálicos/toxicidade , Gravidez , Primeiro Trimestre da Gravidez , Efeitos Tardios da Exposição Pré-Natal/genética , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Receptores do FSH/genética , Receptores do FSH/metabolismo , Receptores do LH/genética , Receptores do LH/metabolismo , Esteroide 17-alfa-Hidroxilase/genética , Esteroide 17-alfa-Hidroxilase/metabolismo , Testículo/metabolismo , Testículo/fisiopatologia , Testosterona/sangue
6.
Biochim Biophys Acta ; 1859(4): 541-52, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26850841

RESUMO

Cell proliferation in mammals follows a circadian rhythm while disruption of clock gene expression has been linked to tumorigenesis. Expression of the c-Myc oncogene is frequently deregulated in tumors, facilitating aberrant cell proliferation. c-MYC protein levels display circadian rhythmicity, which is compatible with an in vitro repressive role of the clock-activating complex BMAL1/CLOCK on its promoter. In this report, we provide evidence for the in vivo binding of the core circadian factor BMAL1 on the human c-Myc promoter. In addition, analysis of protein synthesis and degradation rates, as well as post-translational acetylation, demonstrate that the clock tightly controls cellular MYC levels. The oncoprotein itself is a transcription factor that by responding to mitogenic signals regulates the expression of several hundred genes. c-MYC-driven transcription is generally exerted upon dimerization with MAX and binding to E-box elements, a sequence that is also recognized by the circadian heterodimer. Our reporter assays reveal that the MYC/MAX dimer cannot affect transcription of the circadian gene Per1. However, when overexpressed, c-MYC is able to repress Per1 transactivation by BMAL1/CLOCK via targeting selective E-box sequences. Importantly, upon serum stimulation, MYC was detected in BMAL1 protein complexes. Together, these data demonstrate a novel interaction between MYC and circadian transactivators resulting in reduced clock-driven transcription. Perturbation of Per1 expression by MYC constitutes a plausible alternative explanation for the deregulated expression of clock genes observed in many types of cancer.


Assuntos
Fatores de Transcrição ARNTL/genética , Proteínas CLOCK/genética , Ritmo Circadiano/genética , Proteínas Circadianas Period/genética , Proteínas Proto-Oncogênicas c-myc/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Elementos E-Box/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neuroblastoma , Regiões Promotoras Genéticas , Mapas de Interação de Proteínas
7.
Chronobiol Int ; 27(4): 722-41, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20560708

RESUMO

Circadian clocks govern the mammalian physiology in a day/night-dependent manner. The circadian oscillator of peripheral organs is composed of the same elements as the central pacemaker at the suprachiasmatic nucleus (SCN). The interaction between the circadian clock and several cell cycle components has been established in recent years, since many key regulators of cell cycle and growth control were proved to be rhythmically expressed. In particular, the proto-oncogene c-Myc has been documented to be under circadian regulation. Given that it is overexpressed in many malignancies, the study of c-Myc mRNA and c-MYC protein regulation by the circadian clock is of great interest. Thus, the aim of this work was to: (a) analyze in detail the circadian oscillations of c-Myc steady-state mRNA levels and to investigate whether c-MYC protein levels display any oscillating pattern, and (b) ascertain whether circadian time is important for reducing c-MYC levels after drug application. For this purpose, we selected trichostatin A (TSA), since it is known that long (>or=12 h) treatment durations negatively influence the expression levels of c-Myc and short 2 h treatments up regulate the expression of the central oscillator gene Per1 resulting in the resetting of its rhythm. TSA is a specific inhibitor of histone deacetylases (HDACs), and its application results in increased acetylation levels of histone and non-histone proteins. Our results, using the murine neuroblastoma cell line N2A, show that Per1 and c-Myc steady-state mRNA levels oscillate with the same phase. Moreover, a short 2 h TSA treatment causes a phase-dependent decrease of oscillating c-Myc transcript levels only when applied at the trough of its mRNA rhythm, where a general decrease of c-MYC protein levels is also observed. At the peak of its rhythm, no apparent changes can be observed. These experiments demonstrate for the first time that a significant decrease in c-Myc transcript and protein levels can be achieved after a short TSA treatment applied only at specific circadian times. This is also followed by a reduction in the proliferation rate of the cell population.


Assuntos
Relógios Biológicos/fisiologia , Linhagem Celular Tumoral/efeitos dos fármacos , Ritmo Circadiano/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Ciclo Celular/efeitos dos fármacos , Camundongos , Neuroblastoma , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...