Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37110804

RESUMO

Phosphorene, the 2D form of black phosphorus, has recently attracted interest for optoelectronic and tribological applications. However, its promising properties are affected by the strong tendency of the layers to oxidize in ambient conditions. A significant effort has been made to identify the role of oxygen and water in the oxidation process. In this work, we introduce a first-principles study of the phosphorene phase diagram and provide a quantitative estimate of the interaction of pristine and fully oxidized phosphorene layers with oxygen and water molecules. Specifically, we study oxidized layers with oxygen coverages of 25% and 50% that keep the typical anisotropic structure of the layers. We found that hydroxilated and hydrogenated phosphorene layers are both energetically unfavorable, leading to structural distortions. We also studied the water physisorption on both pristine and oxidized layers, finding that the adsorption energy gain doubled on the oxidized layers, whereas dissociative chemisorption was always energetically unfavorable. At the same time, further oxidation (i.e., the dissociative chemisorption of O2) was always favorable, even on oxidized layers. Ab initio molecular dynamics simulations of water intercalated between sliding phosphorene layers showed that even under harsh tribological conditions water dissociation was not activated, thus further strengthening the results obtained from our static calculations. Overall, our results provide a quantitative description of the interaction of phosphorene with chemical species that are commonly found in ambient conditions at different concentrations. The phase diagram that we introduced confirms the tendency of phosphorene layers to fully oxidize due to the presence of O2, resulting in a material with improved hydrophilicity, a piece of information that is relevant for the application of phosphorene, e.g., as a solid lubricant. At the same time, the structural deformations found for the H- and OH- terminated layers undermine their electrical, mechanical, and tribological anisotropic properties and, therefore, the usage of phosphorene.

2.
ACS Appl Mater Interfaces ; 15(15): 19624-19633, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37015021

RESUMO

Adhesion energy, a measure of the strength by which two surfaces bind together, ultimately dictates the mechanical behavior and failure of interfaces. As natural and artificial solid interfaces are ubiquitous, adhesion energy represents a key quantity in a variety of fields ranging from geology to nanotechnology. Because of intrinsic difficulties in the simulation of systems where two different lattices are matched, and despite their importance, no systematic, accurate first-principles determination of heterostructure adhesion energy is available. We have developed robust, automatic high-throughput workflow able to fill this gap by systematically searching for the optimal interface geometry and accurately determining adhesion energies. We apply it here for the first time to perform the screening of around a hundred metallic heterostructures relevant for technological applications. This allows us to populate a database of accurate values, which can be used as input parameters for macroscopic models. Moreover, it allows us to benchmark commonly used, empirical relations that link adhesion energies to the surface energies of its constituent and to improve their predictivity employing only quantities that are easily measurable or computable.

3.
Phys Chem Chem Phys ; 24(27): 16545-16555, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35766802

RESUMO

Surface adsorption is one of the fundamental processes in numerous fields, including catalysis, the environment, energy and medicine. The development of an adsorption model which provides an effective prediction of binding energy in minutes has been a long term goal in surface and interface science. The solution has been elusive as identifying the intrinsic determinants of the adsorption energy for various compositions, structures and environments is non-trivial. We introduce a new and flexible model for predicting adsorption energies to metal substrates. The model is based on easily computed, intrinsic properties of the substrate and adsorbate, which are the same for all the considered systems. It is parameterised using machine learning based on first-principles calculations of probe molecules (e.g., H2O, CO2, O2, N2) adsorbed to a range of pure metal substrates. The model predicts the computed dissociative adsorption energy to metal surfaces with a correlation coefficient of 0.93 and a mean absolute error of 0.77 eV for the large database of molecular adsorption energies provided by Catalysis-Hub.org which have a range of 15 eV. As the model is based on pre-computed quantities it provides near-instantaneous estimates of adsorption energies and it is sufficiently accurate to eliminate around 90% of candidates in screening study of new adsorbates. The model, therefore, significantly enhances current efforts to identify new molecular coatings in many applied research fields.

4.
Faraday Discuss ; 236(0): 374-388, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35506395

RESUMO

In many engineering scenarios, surface-active organic species are added to acidic solutions to inhibit the corrosion of metallic components. Given suitable selection, such corrosion inhibitors are highly effective, preventing significant degradation even in highly aggressive environments. Nevertheless, there are still considerable gaps in fundamental knowledge of corrosion inhibitor functionality, severely restricting rational development. Here, we demonstrate the capability of X-ray photoelectron spectroscopy (XPS), supported by ab initio modelling, for revealing key details of inhibited substrates. Attention is focussed on the corrosion inhibition of carbon steel through the addition of an exemplar imidazoline-based corrosion inhibitor (OMID) to aqueous solutions of both HCl and H2SO4. Most notably, it is demonstrated that interfacial chemistry varies with the identity of the acid. High resolution Fe 2p, O 1s, N 1s, and Cl 2p XPS spectra, acquired from well-inhibited carbon steel in 1 M HCl, show that there are two different singly protonated OMID species bound directly to the metallic carbon steel substrate. In sharp contrast, in 0.01 M H2SO4, OMID adsorbs onto an ultra-thin surface film, composed primarily of a ferric sulfate (Fe2(SO4)3)-like phase. Such insight is essential to efforts to develop a mechanistic description of corrosion inhibitor functionality, as well as knowledge-based identification of next generation corrosion inhibitors.

5.
J Phys Chem A ; 123(32): 7007-7015, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31318554

RESUMO

Molybdenum dithiocarbamate (MoDTC) is a well-known lubricant additive, which, in tribological conditions, is capable of forming layers of MoS2 with excellent friction reduction properties. Despite being widely employed in commercial engine oils, a comprehensive theoretical description of the properties of MoDTC is still lacking. In this work, we employ density functional theory to study the structural, electronic, and vibrational properties of MoDTC. We investigate the relative stability of different isomers, different hydrocarbon terminations, and oxidized complexes. Oxidation was found to be energetically favorable for a wide range of conditions, and the most favorable position for oxygen atoms in MoDTC turned out to be the ligand position. These results, along with the calculated reaction energies for different dissociation paths, can be useful to better identify the elementary steps of the decomposition process of MoDTC.

6.
ACS Nano ; 13(5): 5485-5492, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-30983325

RESUMO

The catalytic growth on transition metal surfaces provides a clean and controllable route to obtain defect-free, monocrystalline graphene. However, graphene's optical and electronic properties are diminished by the interaction with the metal substrate. One way to overcome this obstacle is the intercalation of atoms and molecules decoupling the graphene and restoring its electronic structure. We applied noncontact atomic force microscopy to study the structural and electric properties of graphene on clean Cu(111) and after the adsorption of KBr or NaCl. By means of Kelvin probe force microscopy, a change in graphene's work function has been observed after the deposition of KBr, indicating a changed graphene-substrate interaction. Further measurements of single-electron charging events as well as X-ray photoelectron spectroscopy confirmed an electronic decoupling of the graphene islands by KBr intercalation. The results have been compared with density functional theory calculations, supporting our experimental findings.

7.
ACS Appl Mater Interfaces ; 10(10): 8937-8946, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29460632

RESUMO

Molybdenum disulfide (MoS2) is a well-known and effective lubricant that provides extremely low values of coefficient of friction. It is known that the sliding process may induce structural transformations of amorphous or disordered MoS2 to the crystalline phase with basal planes oriented parallel to the sliding direction, which is optimal for reducing friction. However, the key reaction parameters and conditions promoting this structural transformation are still largely unknown. We investigate, by employing reactive molecular dynamics simulations, the formation of MoS2 layers from an amorphous phase as a function of temperature, initial sample density, and sliding velocity. We show that the formation of ordered crystalline structures can be explained in the framework of classical nucleation theory as it predicts the conditions for their nucleation and growth. These results may have important implications in the fields of coating and thin-film deposition, tribology, and in all technological applications where a fast and effective structural transition to an ordered phase is needed.

8.
Phys Chem Chem Phys ; 18(41): 28997-29004, 2016 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-27727348

RESUMO

Recent nanofriction experiments of xenon on graphene revealed that the slip onset can be induced by increasing the adsorbate coverage above a critical value, which depends on temperature. Moreover, the xenon slippage on gold is much higher than on graphene in spite of the same physical nature of the interactions. To shed light on these intriguing results we have performed molecular dynamics simulations relying on ab initio derived potentials. By monitoring the interfacial structure factor as a function of coverage and temperature, we show that the key mechanism to interpret the observed frictional phenomena is the size-dependence of the island commensurability. The latter quantity is deeply affected also by the lattice misfit, which explains the different frictional behavior of Xe on graphene and gold.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...