Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1139232, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37332724

RESUMO

Forests are suffering water stress due to climate change; in some parts of the globe, forests are being exposed to the highest temperatures historically recorded. Machine learning techniques combined with robotic platforms and artificial vision systems have been used to provide remote monitoring of the health of the forest, including moisture content, chlorophyll, and nitrogen estimation, forest canopy, and forest degradation, among others. However, artificial intelligence techniques evolve fast associated with the computational resources; data acquisition, and processing change accordingly. This article is aimed at gathering the latest developments in remote monitoring of the health of the forests, with special emphasis on the most important vegetation parameters (structural and morphological), using machine learning techniques. The analysis presented here gathered 108 articles from the last 5 years, and we conclude by showing the newest developments in AI tools that might be used in the near future.

2.
Plants (Basel) ; 10(4)2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33916338

RESUMO

The vegetation indices derived from spectral reflectance have served as an indicator of vegetation's biophysical and biochemical parameters. Some of these indices are capable of characterizing more than one parameter at a time. This study examines the feasibility of retrieving several spectral vegetation indices from a single index under the assumption that all these indices are correlated with water content. The models used are based on a linear regression adjusted with least squares. The spectral signatures of Eucalyptus globulus and Pinus radiata, which constitute 97.5% of the forest plantation in Valparaiso region in Chile, have been used to test and validate the proposed approach. The linear models were fitted with an independent data set from which their performance was assessed. The results suggest that from the Leaf Water Index, other spectral indices can be recovered with a root mean square error up to 0.02, a bias of 1.12%, and a coefficient of determination of 0.77. The latter encourages using a sensor with discrete wavelengths instead of a continuum spectrum to estimate the forestry's essential parameters.

3.
Sci Rep ; 10(1): 11364, 2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32647154

RESUMO

Soot emissions from flaming combustion are relevant as a significant source of atmospheric pollution and as a source of nanomaterials. Candles are interesting targets for soot characterization studies since they burn complex fuels with a large number of carbon atoms, and yield stable and repeatable flames. We characterized the soot particle size distributions in a candle flame using the planar two-color time-resolved laser induced incandescence (2D-2C TiRe-LII) technique, which has been successfully applied to different combustion applications, but never before on a candle flame. Soot particles are heated with a planar laser sheet to temperatures above the normal flame temperatures. The incandescent soot particles emit thermal radiation, which decays over time when the particles cool down to the flame temperature. By analyzing the temporal decay of the incandescence signal, soot particle size distributions within the flame are obtained. Our results are consistent with previous works, and show that the outer edges of the flame are characterized by larger particles ([Formula: see text]), whereas smaller particles ([Formula: see text]) are found in the central regions. We also show that our effective temperature estimates have a maximum error of 100 K at early times, which decreases as the particles cool.

4.
Sensors (Basel) ; 19(24)2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31842283

RESUMO

Fuel moisture content (FMC) proved to be one of the most relevant parameters for controlling fire behavior and risk, particularly at the wildland-urban interface (WUI). Data relating FMC to spectral indexes for different species are an important requirement identified by the wildfire safety community. In Valparaíso, the WUI is mainly composed of Eucalyptus Globulus and Pinus Radiata-commonly found in Mediterranean WUI areas-which represent the 97.51% of the forests plantation inventory. In this work we study the spectral signature of these species under different levels of FMC. In particular, we analyze the behavior of the spectral reflectance per each species at five dehydration stages, obtaining eighteen spectral indexes related to water content and, for Eucalyptus Globulus, the area of each leave-associated with the water content-is also computed. As the main outcome of this research, we provide a validated linear regression model associated with each spectral index and the fuel moisture content and moisture loss, per each species studied.

5.
Sensors (Basel) ; 18(5)2018 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-29751625

RESUMO

Industrial combustion processes are an important source of particulate matter, causing significant pollution problems that affect human health, and are a major contributor to global warming. The most common method for analyzing the soot emission propensity in flames is the Smoke Point Height (SPH) analysis, which relates the fuel flow rate to a critical flame height at which soot particles begin to leave the reactive zone through the tip of the flame. The SPH and is marked by morphological changes on the flame tip. SPH analysis is normally done through flame observations with the naked eye, leading to high bias. Other techniques are more accurate, but are not practical to implement in industrial settings, such as the Line Of Sight Attenuation (LOSA), which obtains soot volume fractions within the flame from the attenuation of a laser beam. We propose the use of Video Magnification techniques to detect the flame morphological changes and thus determine the SPH minimizing observation bias. We have applied for the first time Eulerian Video Magnification (EVM) and Phase-based Video Magnification (PVM) on an ethylene laminar diffusion flame. The results were compared with LOSA measurements, and indicate that EVM is the most accurate method for SPH determination.

6.
Fire Saf J ; 1002018.
Artigo em Inglês | MEDLINE | ID: mdl-30983689

RESUMO

Large outdoor fires present a risk to the built environment. Wildfires that spread into communities, referred to as Wildland-Urban Interface (WUI) fires, have destroyed communities throughout the world, and are an emerging problem in fire safety science. Other examples are large urban fires including those that have occurred after earthquakes. Research into large outdoor fires, and how to potentially mitigate the loss of structures in such fires, lags other areas of fire safety science research. At the same time, common characteristics between fire spread in WUI fires and urban fires have not been fully exploited. In this paper, an overview of the large outdoor fire risk to the built environment from each region is presented. Critical research needs for this problem in the context offire safety science are provided. The present paper seeks to develop the foundation for an international research needs roadmap to reduce the risk of large outdoor fires to the built environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...