Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
J Clin Med ; 11(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36294304

RESUMO

PURPOSE: To evaluate the performance of a new, highly flexible radiofrequency (RF) coil system for imaging patients undergoing MR simulation. METHODS: Volumetric phantom and in vivo images were acquired with a commercially available and prototype RF coil set. Phantom evaluation was performed using a silicone-filled humanoid phantom of the head and shoulders. In vivo assessment was performed in five healthy and six patient subjects. Phantom data included T1-weighted volumetric imaging, while in vivo acquisitions included both T1- and T2-weighted volumetric imaging. Signal to noise ratio (SNR) and uniformity metrics were calculated in the phantom data, while SNR values were calculated in vivo. Statistical significance was tested by means of a non-parametric analysis of variance test. RESULTS: At a threshold of p = 0.05, differences in measured SNR distributions within the entire phantom volume were statistically different in two of the three paired coil set comparisons. Differences in per slice average SNR between the two coil sets were all statistically significant, as well as differences in per slice image uniformity. For patients, SNRs within the entire imaging volume were statistically significantly different in four of the nine comparisons and seven of the nine comparisons performed on the per slice average SNR values. For healthy subjects, SNRs within the entire imaging volume were statistically significantly different in seven of the nine comparisons and eight of the nine comparisons when per slice average SNR was tested. CONCLUSIONS: Phantom and in vivo results demonstrate that image quality obtained from the novel flexible RF coil set was similar or improved over the conventional coil system. The results also demonstrate that image quality is impacted by the specific coil configurations used for imaging and should be matched appropriately to the anatomic site imaged to ensure optimal and reproducible image quality.

2.
Neuroimage ; 255: 119176, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35390461

RESUMO

PURPOSE: To develop a rigid real-time prospective motion-corrected multiparametric mapping technique and to test the performance of quantitative estimates. METHODS: Motion tracking and correction were performed by integrating single-shot spiral navigators into a multiparametric imaging technique, three-dimensional quantification using an interleaved Look-Locker acquisition sequence with a T2 preparation pulse (3D-QALAS). The spiral navigator was optimized, and quantitative measurements were validated using a standard system phantom. The effect of motion correction on whole-brain T1 and T2 mapping under different types of head motion during the scan was evaluated in 10 healthy volunteers. Finally, six patients with Parkinson's disease, which is known to be associated with a high prevalence of motion artifacts, were scanned to evaluate the effectiveness of our method in the real world. RESULTS: The phantom study demonstrated that the proposed motion correction method did not introduce quantitative bias. Improved parametric map quality and repeatability were shown in volunteer experiments with both in-plane and through-plane motions, comparable to the no-motion ground truth. In real-life validation in patients, the approach showed improved parametric map quality compared to images obtained without motion correction. CONCLUSIONS: Real-time prospective motion-corrected multiparametric relaxometry based on 3D-QALAS provided robust and repeatable whole-brain multiparametric mapping.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Artefatos , Encéfalo/diagnóstico por imagem , Humanos , Imageamento Tridimensional , Imageamento por Ressonância Magnética/métodos , Movimento (Física) , Imagens de Fantasmas , Estudos Prospectivos
3.
Magn Reson Med ; 84(3): 1661-1671, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32077521

RESUMO

PURPOSE: Motion artifact limits the clinical translation of high-field MR. We present an optical prospective motion correction system for 7 Tesla MRI using a custom-built, within-coil camera to track an optical marker mounted on a subject. METHODS: The camera was constructed to fit between the transmit-receive coils with direct line of sight to a forehead-mounted marker, improving upon prior mouthpiece work at 7 Tesla MRI. We validated the system by acquiring a 3D-IR-FSPGR on a phantom with deliberate motion applied. The same 3D-IR-FSPGR and a 2D gradient echo were then acquired on 7 volunteers, with/without deliberate motion and with/without motion correction. Three neuroradiologists blindly assessed image quality. In 1 subject, an ultrahigh-resolution 2D gradient echo with 4 averages was acquired with motion correction. Four single-average acquisitions were then acquired serially, with the subject allowed to move between acquisitions. A fifth single-average 2D gradient echo was acquired following subject removal and reentry. RESULTS: In both the phantom and human subjects, deliberate and involuntary motion were well corrected. Despite marked levels of motion, high-quality images were produced without spurious artifacts. The quantitative ratings confirmed significant improvements in image quality in the absence and presence of deliberate motion across both acquisitions (P < .001). The system enabled ultrahigh-resolution visualization of the hippocampus during a long scan and robust alignment of serially acquired scans with interspersed movement. CONCLUSION: We demonstrate the use of a within-coil camera to perform optical prospective motion correction and ultrahigh-resolution imaging at 7 Tesla MRI. The setup does not require a mouthpiece, which could improve accessibility of motion correction during 7 Tesla MRI exams.


Assuntos
Artefatos , Encéfalo , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Movimento (Física) , Neuroimagem , Estudos Prospectivos
4.
IEEE Trans Radiat Plasma Med Sci ; 3(4): 498-503, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31396580

RESUMO

A significant challenge during high-resolution PET brain imaging on PET/MR scanners is patient head motion. This challenge is particularly significant for clinical patient populations who struggle to remain motionless in the scanner for long periods of time. Head motion also affects the MR scan data. An optical motion tracking technique, which has already been demonstrated to perform MR motion correction during acquisition, is used with a list-mode PET reconstruction algorithm to correct the motion for each recorded event and produce a corrected reconstruction. The technique is demonstrated on real Alzheimer's disease patient data for the GE SIGNA PET/MR scanner.

5.
PLoS One ; 13(6): e0199372, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29953459

RESUMO

In MRI, subject motion results in image artifacts. High-resolution 3D scans, like MPRAGE, are particularly susceptible to motion because of long scan times and acquisition of data over multiple-shots. Such motion related artifacts have been shown to cause a bias in cortical measures extracted from segmentation of high-resolution MPRAGE images. Prospective motion correction (PMC) techniques have been developed to help mitigate artifacts due to subject motion. In this work, high-resolution MPRAGE images are acquired during intentional head motion to evaluate the effectiveness of navigator-based PMC techniques to improve both the accuracy and reproducibility of cortical morphometry measures obtained from image segmentation. The contribution of reacquiring segments of k-space affected by motion to the overall performance of PMC is assessed. Additionally, the effect of subject motion on subcortical structure volumes is investigated. In the presence of head motion, navigator-based PMC is shown to improve both the accuracy and reproducibility of cortical and subcortical measures. It is shown that reacquiring segments of k-space data that are corrupted by motion is an essential part of navigator-based PMC performance. Subcortical structure volumes are not affected by motion in the same way as cortical measures; there is not a consistent underestimation.


Assuntos
Imageamento Tridimensional , Imageamento por Ressonância Magnética , Movimento (Física) , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/métodos , Reprodutibilidade dos Testes
6.
J Magn Reson Imaging ; 46(6): 1590-1600, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28419602

RESUMO

A pedagogical review of fluid-attenuated inversion recovery (FLAIR) and double inversion recovery (DIR) imaging is conducted in this article. The basics of the two pulse sequences are first described, including the details of the inversion preparation and imaging sequences with accompanying mathematical formulae for choosing the inversion time in a variety of scenarios for use on clinical MRI scanners. Magnetization preparation (or T2prep), a strategy for improving image signal-to-noise ratio and contrast and reducing T1 weighting at high field strengths, is also described. Lastly, image artifacts commonly associated with FLAIR and DIR are described with clinical examples, to help avoid misdiagnosis. LEVEL OF EVIDENCE: 5 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2017;46:1590-1600.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Física , Humanos
7.
Eur Radiol ; 27(8): 3554-3562, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28116516

RESUMO

OBJECTIVE: To assess the utility of the motion correction method with prospective motion correction (PROMO) in a voxel-based morphometry (VBM) analysis for 'uncooperative' patient populations. METHODS: High-resolution 3D T1-weighted imaging both with and without PROMO were performed in 33 uncooperative patients with Parkinson's disease (n = 11) or dementia (n = 22). We compared the grey matter (GM) volumes and cortical thickness between the scans with and without PROMO. RESULTS: For the mean total GM volume with the VBM analysis, the scan without PROMO showed a significantly smaller volume than that with PROMO (p < 0.05), which was caused by segmentation problems due to motion during acquisition. The whole-brain VBM analysis showed significant GM volume reductions in some regions in the scans without PROMO (familywise error corrected p < 0.05). In the cortical thickness analysis, the scans without PROMO also showed decreased cortical thickness compared to the scan with PROMO (p < 0.05). CONCLUSION: Our results with the uncooperative patients indicate that the use of PROMO can reduce misclassification during segmentation of the VBM analyses, although it may not prevent GM volume reduction. KEY POINTS: • Motion artifacts pose significant problems for VBM analyses. • PROMO correction can reduce the motion artifacts in high-resolution 3D T1WI. • The use of PROMO may improve the precision of VBM analyses.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Demência/diagnóstico por imagem , Aumento da Imagem/métodos , Doença de Parkinson/diagnóstico por imagem , Idoso , Idoso de 80 Anos ou mais , Artefatos , Feminino , Substância Cinzenta/diagnóstico por imagem , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Movimento (Física) , Cooperação do Paciente , Estudos Prospectivos
8.
Alzheimers Dement ; 11(7): 740-56, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26194310

RESUMO

INTRODUCTION: Alzheimer's Disease Neuroimaging Initiative (ADNI) is now in its 10th year. The primary objective of the magnetic resonance imaging (MRI) core of ADNI has been to improve methods for clinical trials in Alzheimer's disease (AD) and related disorders. METHODS: We review the contributions of the MRI core from present and past cycles of ADNI (ADNI-1, -Grand Opportunity and -2). We also review plans for the future-ADNI-3. RESULTS: Contributions of the MRI core include creating standardized acquisition protocols and quality control methods; examining the effect of technical features of image acquisition and analysis on outcome metrics; deriving sample size estimates for future trials based on those outcomes; and piloting the potential utility of MR perfusion, diffusion, and functional connectivity measures in multicenter clinical trials. DISCUSSION: Over the past decade the MRI core of ADNI has fulfilled its mandate of improving methods for clinical trials in AD and will continue to do so in the future.


Assuntos
Doença de Alzheimer/diagnóstico , Encéfalo/patologia , Imageamento por Ressonância Magnética , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/complicações , Biomarcadores/líquido cefalorraquidiano , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Transtornos Cognitivos/etiologia , História do Século XX , História do Século XXI , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/história , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/normas , Tomografia por Emissão de Pósitrons , Marcadores de Spin
9.
Clin Invest Med ; 38(3): E90-9, 2015 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-26026643

RESUMO

PURPOSE: To determine the reliability of arterial phase capture and evaluate hypervascular lesion contrast kinetics with a combined view-sharing and parallel imaging dynamic contrast-enhanced acquisition, DIfferential Sub-sampling with Cartesian Ordering (DISCO), in patients with known chronic liver disease. METHODS: A retrospective review of 3T MR images from 26 patients with known chronic liver disease referred for hepatocellular carcinoma surveillance or post-treatment follow up was performed. After administration of a gadolinium-based contrast agent, a multiphasic acquisition was obtained in a 28 s breath-hold, from which seven sequential post-contrast image volumes were reconstructed. RESULTS: The late arterial phase was successfully captured in all cases (26/26, 95% CI 87-100%). Images obtained 26 s post-injection had the highest frequency of late arterial phase capture (20/26) and lesion detection (23/26) of any individual post-contrast time; however, the multiphasic data resulted in a significantly higher frequency of late arterial phase capture (26/26, p=0.03) and a higher relative contrast (5.37+/-0.97 versus 7.10+/-0.98, p < 0.01). CONCLUSION: Multiphasic acquisition with combined view-sharing and parallel imaging reliably captures the late arterial phase and provides sufficient temporal resolution to characterize hepatic lesion contrast kinetics in patients with chronic liver disease while maintaining high spatial resolution.


Assuntos
Carcinoma Hepatocelular/diagnóstico , Imagem Ecoplanar/métodos , Neoplasias Hepáticas/diagnóstico , Fígado/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Hepatocelular/patologia , Doença Crônica , Feminino , Humanos , Hepatopatias/diagnóstico , Hepatopatias/patologia , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Triagem Multifásica/métodos , Reprodutibilidade dos Testes , Estudos Retrospectivos
10.
J Magn Reson Imaging ; 40(6): 1392-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24227703

RESUMO

PURPOSE: To investigate a new variable spatiotemporal resolution dynamic contrast-enhanced (DCE) MRI method termed DIfferential Subsampling with Cartesian Ordering (DISCO), for imaging of breast cancer. MATERIALS AND METHODS: DISCO combines variable density, pseudorandom k-space segmentation and two-point Dixon fat-water separation for high spatiotemporal resolution breast DCE MRI. During the contrast wash-in phase, view sharing is used to achieve high temporal resolution. Forty patients referred for breast MRI were imaged, 26 using the proposed DISCO sequence and 14 using a conventional low-spatial-resolution dynamic sequence (VIBRANT-FLEX) on a 3 Tesla scanner. DISCO dynamic images from 14 patients were compared with VIBRANT-FLEX images from 14 other patients. The image quality assessed by radiologist image ranking in a blinded manner, and the temporal characteristics of the two sequences were compared. RESULTS: A spatial resolution of 1.1 × 1.1 × 1.2 mm(3) (160 slices, 28 cm field of view) was achieved with axial bilateral coverage in 120 s. Dynamic images with ∼ 9 s effective temporal resolution were generated during the 2-min contrast wash-in phase. The image quality of DISCO dynamic images ranked significantly higher than low spatial resolution VIBRANT-FLEX images (19.5 versus 9.5, Mann-Whitney U-test P = 0.00914), with no significant differences in the maximum slope of aortic enhancement. CONCLUSION: DISCO is a promising variable-spatiotemporal-resolution imaging sequence for capturing the dynamics of rapidly enhancing tumors as well as structural features postcontrast. A near 1-mm isotropic spatial resolution was achieved with postcontrast static phase images in 120 s and dynamic phase images acquired in 9 s per phase.


Assuntos
Neoplasias da Mama/patologia , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Processamento de Sinais Assistido por Computador , Adulto , Idoso , Algoritmos , Meios de Contraste , Feminino , Humanos , Aumento da Imagem/métodos , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Método Simples-Cego , Análise Espaço-Temporal
11.
J Magn Reson Imaging ; 35(6): 1484-92, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22334505

RESUMO

PURPOSE: To develop and evaluate a multiphasic contrast-enhanced MRI method called DIfferential Sub-sampling with Cartesian Ordering (DISCO) for abdominal imaging. MATERIALS AND METHODS: A three-dimensional, variable density pseudo-random k-space segmentation scheme was developed and combined with a Dixon-based fat-water separation algorithm to generate high temporal resolution images with robust fat suppression and without compromise in spatial resolution or coverage. With institutional review board approval and informed consent, 11 consecutive patients referred for abdominal MRI at 3 Tesla (T) were imaged with both DISCO and a routine clinical three-dimensional SPGR-Dixon (LAVA FLEX) sequence. All images were graded by two radiologists using quality of fat suppression, severity of artifacts, and overall image quality as scoring criteria. For assessment of arterial phase capture efficiency, the number of temporal phases with angiographic phase and hepatic arterial phase was recorded. RESULTS: There were no significant differences in quality of fat suppression, artifact severity or overall image quality between DISCO and LAVA FLEX images (P > 0.05, Wilcoxon signed rank test). The angiographic and arterial phases were captured in all 11 patients scanned using the DISCO acquisition (mean number of phases were two and three, respectively). CONCLUSION: DISCO effectively captures the fast dynamics of abdominal pathology such as hyperenhancing hepatic lesions with a high spatio-temporal resolution. Typically, 1.1 × 1.5 × 3 mm spatial resolution over 60 slices was achieved with a temporal resolution of 4-5 s.


Assuntos
Abdome/patologia , Neoplasias Abdominais/patologia , Algoritmos , Gadolínio , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Adulto , Meios de Contraste , Humanos , Masculino , Reprodutibilidade dos Testes , Tamanho da Amostra , Sensibilidade e Especificidade
12.
Pediatr Radiol ; 41(12): 1578-82, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21779892

RESUMO

A new technique for prospectively correcting head motion (called PROMO) during acquisition of high-resolution MRI scans has been developed to reduce motion artifacts. To evaluate the efficacy of PROMO, four T1-weighted image volumes (two with PROMO enabled, two uncorrected) were acquired for each of nine children. A radiologist, blind to whether PROMO was used, rated image quality and artifacts on all sagittal slices of every volume. These ratings were significantly better in scans collected with PROMO relative to those collected without PROMO (Mann-Whitney U test, P < 0.0001). The use of PROMO, especially in motion-prone patients, should improve the accuracy of measurements made for clinical care and research, and potentially reduce the need for sedation in children.


Assuntos
Artefatos , Encéfalo/anatomia & histologia , Movimentos da Cabeça , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Criança , Feminino , Humanos , Masculino , Movimento (Física) , Variações Dependentes do Observador , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
13.
Neuroimage ; 53(1): 139-45, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20542120

RESUMO

Motion artifacts pose significant problems for the acquisition and analysis of high-resolution magnetic resonance imaging data. These artifacts can be particularly severe when studying pediatric populations, where greater patient movement reduces the ability to clearly view and reliably measure anatomy. In this study, we tested the effectiveness of a new prospective motion correction technique, called PROMO, as applied to making neuroanatomical measures in typically developing school-age children. This method attempts to address the problem of motion at its source by keeping the measurement coordinate system fixed with respect to the subject throughout image acquisition. The technique also performs automatic rescanning of images that were acquired during intervals of particularly severe motion. Unlike many previous techniques, this approach adjusts for both in-plane and through-plane movement, greatly reducing image artifacts without the need for additional equipment. Results show that the use of PROMO notably enhances subjective image quality, reduces errors in Freesurfer cortical surface reconstructions, and significantly improves the subcortical volumetric segmentation of brain structures. Further applications of PROMO for clinical and cognitive neuroscience are discussed.


Assuntos
Algoritmos , Artefatos , Encéfalo/anatomia & histologia , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Reconhecimento Automatizado de Padrão/métodos , Criança , Feminino , Humanos , Masculino , Movimento (Física) , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
14.
Magn Reson Med ; 63(1): 91-105, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20027635

RESUMO

Artifacts caused by patient motion during scanning remain a serious problem in most MRI applications. The prospective motion correction technique attempts to address this problem at its source by keeping the measurement coordinate system fixed with respect to the patient throughout the entire scan process. In this study, a new image-based approach for prospective motion correction is described, which utilizes three orthogonal two-dimensional spiral navigator acquisitions, along with a flexible image-based tracking method based on the extended Kalman filter algorithm for online motion measurement. The spiral navigator/extended Kalman filter framework offers the advantages of image-domain tracking within patient-specific regions-of-interest and reduced sensitivity to off-resonance-induced corruption of rigid-body motion estimates. The performance of the method was tested using offline computer simulations and online in vivo head motion experiments. In vivo validation results covering a broad range of staged head motions indicate a steady-state error of less than 10% of the motion magnitude, even for large compound motions that included rotations over 15 deg. A preliminary in vivo application in three-dimensional inversion recovery spoiled gradient echo (IR-SPGR) and three-dimensional fast spin echo (FSE) sequences demonstrates the effectiveness of the spiral navigator/extended Kalman filter framework for correcting three-dimensional rigid-body head motion artifacts prospectively in high-resolution three-dimensional MRI scans.


Assuntos
Algoritmos , Artefatos , Encéfalo/anatomia & histologia , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Sistemas Computacionais , Humanos , Movimento (Física) , Movimento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Software
15.
J Magn Reson Imaging ; 30(5): 1101-9, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19856444

RESUMO

PURPOSE: To evaluate the feasibility of applying the shells trajectory to single-phase contrast-enhanced magnetic resonance angiography. MATERIALS AND METHOD: Several methods were developed to overcome the challenges of the clinical implementation of shells including off-resonance blurring (eg, from lipid signal), aliasing artifacts, and long reconstruction times. These methods included: 1) variable TR with variable readout length to reduce fat signal and off-resonance blurring; 2) variable sampling density to suppress aliasing artifacts while minimizing acquisition time penalty; and 3) an online 3D gridding algorithm that reconstructed an 8-channel, 240(3) image volume set. Both phantom and human studies were performed to establish the initial feasibility of the methods. RESULTS: Phantom and human study results demonstrated the effectiveness of the proposed methods. Shells with variable TR and readout length further suppressed the fat signal compared to the fixed-TR shells acquisition. Reduced image aliasing was achieved with minimal scan time penalty when a variable sampling density technique was used. The fast online reconstruction algorithm completed in 2 minutes at the scanner console, providing a timely image display in a clinical setting. CONCLUSION: It was demonstrated that the use of the shells trajectory is feasible in a clinical setting to acquire intracranial angiograms with high spatial resolution. Preliminary results demonstrate effective venous suppression in the cavernous sinuses and jugular vein region.


Assuntos
Encéfalo/patologia , Meios de Contraste/farmacologia , Processamento de Imagem Assistida por Computador/métodos , Angiografia por Ressonância Magnética/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Artérias/patologia , Feminino , Humanos , Imageamento Tridimensional/métodos , Masculino , Artérias Mesentéricas/patologia , Pessoa de Meia-Idade
16.
J Magn Reson Imaging ; 29(6): 1406-13, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19425056

RESUMO

PURPOSE: To evaluate a new dynamic contrast-enhanced (DCE) imaging technique called multiecho time-resolved acquisition (META) for abdominal/pelvic imaging. META combines an elliptical centric time-resolved three-dimensional (3D) spoiled gradient-recalled echo (SPGR) imaging scheme with a Dixon-based fat-water separation algorithm to generate high spatiotemporal resolution volumes. MATERIALS AND METHODS: Twenty-three patients referred for hepatic metastases or renal masses were imaged using the new META sequence and a conventional fat-suppressed 3D SPGR sequence on a 3T scanner. In 12 patients, equilibrium-phase 3D SPGR images acquired immediately after META were used for comparing the degree and homogeneity of fat suppression, artifacts, and overall image quality. In the remaining 11 of 23 patients, DCE 3D SPGR images acquired in a previous or subsequent examination were used for comparing the efficiency of arterial phase capture in addition to the qualitative analysis for the degree and homogeneity of fat suppression, artifacts, and overall image quality. RESULTS: META images were determined to be significantly better than conventional 3D SPGR images for degree and uniformity of fat suppression and ability to visualize the arterial phase. There were no significant differences in artifact levels or overall image quality. CONCLUSION: META is a promising high spatiotemporal resolution imaging sequence for capturing the fast dynamics of hyperenhancing hepatic lesions and provides robust fat suppression even at 3T.


Assuntos
Aumento da Imagem/métodos , Nefropatias/patologia , Hepatopatias/patologia , Imageamento por Ressonância Magnética/métodos , Tecido Adiposo/anatomia & histologia , Algoritmos , Artefatos , Meios de Contraste , Gadolínio DTPA , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional , Estatísticas não Paramétricas , Fatores de Tempo
17.
J Magn Reson Imaging ; 25(6): 1141-6, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17520725

RESUMO

PURPOSE: To develop a gated single-breathhold, high temporal resolution three-dimensional (3D) CINE imaging technique and to evaluate its accuracy in volumetric and functional quantification in patients with chronic myocardial infarction. MATERIALS AND METHODS: A 3D CINE steady-state free precession (SSFP) pulse sequence was developed incorporating variable temporal sampling of the low and high spatial frequency k-space data to reduce breathhold time and parallel imaging to increase temporal resolution. Reconstruction with retrospective interpolation enabled complete R-R interval coverage. Feasibility was assessed in eight patients with chronic myocardial infarction and ventricular functional values were compared to those of a 2D CINE acquisition. RESULTS: There was no significant difference between the 3D CINE and 2D CINE for end-diastolic volume (168 +/- 73 vs. 177 +/- 59 mL, respectively; P < 0.27), end-systolic volume (81 +/- 62 vs. 79 +/- 53 mL; P < 0.81), and ejection fraction (EF) measurements (55 +/- 14% vs. 58 +/- 14%; P < 0.14). The mean difference in EF was less than 2.5%. A wall motion assessment indicated a good agreement, with a weighted kappa value of 0.62. CONCLUSION: High temporal resolution 3D CINE SSFP imaging of the whole heart can be obtained in a single breathhold and yield ventricular function measurements similar to 2D CINE methods.


Assuntos
Imagem Cinética por Ressonância Magnética/métodos , Infarto do Miocárdio/fisiopatologia , Disfunção Ventricular Esquerda/fisiopatologia , Adulto , Doença Crônica , Estudos de Viabilidade , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade
18.
J Magn Reson Imaging ; 23(1): 42-9, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16315213

RESUMO

PURPOSE: To validate partial Fourier phase contrast magnetic resonance (PC MR) with full number of excitation (NEX) PC MR measurements in vitro and in vivo. MATERIALS AND METHODS: MR flow measurements were performed using a partial Fourier and a full NEX PC MR sequence in a flow phantom and in 10 popliteal and renal arteries of 10 different healthy volunteers. Average velocity, peak velocity, and flow results were calculated and compared with regression analysis. RESULTS: Excellent correlations in average velocities (r = 0.99, P < 0.001), peak velocities (r = 0.99, P < 0.001), and flow rates (r = 0.98, P < 0.001) were demonstrated in vitro between the two different acquisitions. For the popliteal arteries there was excellent correlation between peak velocities for both acquisitions (r = 0.98, P < 0.0001); the correlation of average velocity measurements when using all data points in the cardiac cycle for all volunteers was 0.96 (P < 0.001). For the renal arteries the same comparison resulted in a good correlation for average velocity (0.93, P < 0.001) and peak velocity measurements (r = 0.91, P = 0.002), although the correlation coefficient for flow rates was 0.88 (P = 0.004). Blurring of the vessel margins was consistently observed on magnitude images acquired with the partial Fourier method, causing overestimation of the vessel area and some error in the flow measurements. CONCLUSION: Partial Fourier PC MR is able to provide comparable average and peak velocity values when using 1 NEX PC MRI as a reference.


Assuntos
Velocidade do Fluxo Sanguíneo/fisiologia , Imageamento por Ressonância Magnética/métodos , Adulto , Análise de Fourier , Humanos , Processamento de Imagem Assistida por Computador , Técnicas In Vitro , Imagens de Fantasmas , Artéria Poplítea/fisiologia , Análise de Regressão , Artéria Renal/fisiologia
19.
Magn Reson Med ; 53(4): 965-9, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15799058

RESUMO

This work presents an efficient method for achieving steady state in multi-slice 2D balanced steady-state free precession (SSFP) imaging of cardiac function. With current techniques, data acquisition for each slice is preceded by one or two heartbeats of dummy excitations. Depending on the number of heartbeats required for data acquisition, these dummy heartbeats can represent a large fraction of the total imaging time. As described here, FIESTA-SP (FIESTA with steady-state preparation) increases the imaging efficiency to nearly 100% by eliminating dummy heartbeats. Steady state for each slice is achieved using a linear flip angle series of excitations during the first cardiac phase of the first heartbeat for each slice. Because imaging proceeds immediately from one slice to the next, a heretofore-unseen issue arises where residual magnetization from each slice contaminates subsequent acquisitions. Accelerating the approach to steady state for each slice and eliminating slice cross talk are important for both multi-slice and interactive real-time imaging.


Assuntos
Imagem Cinética por Ressonância Magnética/métodos , Contração Miocárdica/fisiologia , Humanos , Imagens de Fantasmas
20.
J Am Coll Cardiol ; 44(12): 2383-9, 2004 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-15607402

RESUMO

OBJECTIVES: To identify an accurate and reproducible method to define myocardial infarct (MI) size, we conducted a study in a closed-chest canine model of acute myocardial infarction, in which MI size was measured using different thresholding techniques and by imaging at different delay times after contrast administration. BACKGROUND: The MI size by contrast-enhanced magnetic resonance imaging (CE-MRI) is directly related to long-term prognosis. However, previous measurements were done using nonuniform methods and tended to overestimate nonviable areas. METHODS: Thirteen animals underwent 90 min of coronary artery occlusion, followed by reperfusion. The CE-MRI data were acquired within 24 h after reperfusion and compared with triphenyltetrazolium chloride pathology. In the first nine animals, images were obtained approximately 15 min after gadolinium diethylene triamine penta-acetic acid (Gd-DTPA) using an inversion-recovery gradient-echo pulse sequence. To identify the most accurate method, MI size by CE-MRI was measured visually and by semi-automatic thresholding techniques, using different criteria. In four additional animals, images were acquired every 6 min until 30 min after Gd-DTPA. RESULTS: Postmortem MI size was 13.5 +/- 2.6% of left ventricular volume. Semi-automatic techniques, using full-width at half-maximum (FWHM) criterion, correlated best with postmortem data (r(2) = 0.94, p < 0.001; results confirmed by Bland-Altman plots). Using FWHM, there was no difference in MI size between different delay times after contrast (15.2 +/- 2.9% to 14.5 +/- 4.2% at 6 and 30 min, respectively; p = NS). CONCLUSIONS: When an objective technique is used to define MI size by CE-MRI, accurate infarct size measurements can be obtained from images obtained up to 30 min after contrast administration.


Assuntos
Meios de Contraste , Imagem Ecoplanar , Gadolínio DTPA , Infarto do Miocárdio/diagnóstico , Animais , Corantes , Cães , Infarto do Miocárdio/patologia , Sais de Tetrazólio , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...