Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
MethodsX ; 12: 102667, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38559385

RESUMO

Mycobacterium abscessus is one of the most important nontuberculous mycobacteria that cause lung diseases. In vitro infection models developed to analyze the immune response are frequently based on the addition of mycobacteria to mononuclear cells or neutrophils from peripheral blood. An important requirement of these assays is that most cells phagocytose mycobacteria, only accomplished by using large multiplicities of infection (1 or more bacteria per cell) which may not adequately reflect the inhalation of a few mycobacteria by the host. We propose modifications that try to mimic some of the conditions in which immune cells deal with mycobacteria. For the preparation of the inoculum mycobacteria are grown in solid media followed by preparation to a single cell suspension. Multiplicities of infection (number of bacteria per cell) are below 0.01. Serum-free cellular media is used to allow the growth of M. abscessus. After several days of incubation Bacterial Colonies in Cellular Culture (BCCC) develop, which are enumerated directly under an inverted microscope. These colonies may represent biofilm formation during chronic infections. •Low multiplicity of infection (below 0.01 bacteria per cell) reflects more realistically conditions encountered by immune cells in the lungs.•The surface of mycobacteria prepared for infection assays that are grown in solid media are less affected than that of mycobacteria grown in liquid media with detergents.•Colony formation in the infected cells may reflect the aggregation and biofilm formation in the lungs during chronic infection.

2.
Microorganisms ; 12(4)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38674609

RESUMO

Nontuberculous mycobacteria (NTM) are environmental and ubiquitous, but only a few species are associated with disease, often presented as nodular/bronchiectatic or cavitary pulmonary forms. Bronchiectasis, airways dilatations characterized by chronic productive cough, is the main presentation of NTM pulmonary disease. The current Cole's vicious circle model for bronchiectasis proposes that it progresses from a damaging insult, such as pneumonia, that affects the respiratory epithelium and compromises mucociliary clearance mechanisms, allowing microorganisms to colonize the airways. An important bronchiectasis risk factor is primary ciliary dyskinesia, but other ciliopathies, such as those associated with connective tissue diseases, also seem to facilitate bronchiectasis, as may occur in Lady Windermere syndrome, caused by M. avium infection. Inhaled NTM may become part of the lung microbiome. If the dose is too large, they may grow excessively as a biofilm and lead to disease. The incidence of NTM pulmonary disease has increased in the last two decades, which may have influenced the parallel increase in bronchiectasis incidence. We propose that ciliary dyskinesia is the main promoter of bronchiectasis, and that the bacteria most frequently involved are NTM. Restoration of ciliary function and impairment of mycobacterial biofilm formation may provide effective therapeutic alternatives to antibiotics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...