Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rep Pract Oncol Radiother ; 26(4): 553-562, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34434571

RESUMO

BACKGROUND: The comparison between profiles during the commissioning of the treatment planning system is an essential procedure. It is impossible to designate a field size for off-axis, wedged, and FFF beams directly by using the definition of the on-axis symmetric field size. This work proposes the use of different characteristic points as indicators of the field size for commissioning and QA purposes. This work aimed to search for the beam profile's characteristic points and use them for the TPS commissioning purposes. MATERIALS AND METHODS: The proposal is to use profile inflection points as the beam profile characteristic points. The usage of dedicated software allowed for comparing distances between inflection points and between points of 50% intensity. For the off-axis, wedged, and FFF fields, comparisons were made to the nominal field sizes. RESULTS: Distances between inflection points proved to be different by less than 1 mm from nominal field sizes for all kinds of investigated beams. CONCLUSIONS: Inflection points are convenient for comparing the off-axis, wedged, and FFF field sizes because of their independence from profile normalization. With finite accuracy, the inflection points could be used for the above kind of beam sizes designation.

2.
J Appl Clin Med Phys ; 22(1): 156-164, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33314643

RESUMO

The accuracy of radiotherapy is the subject of continuous discussion, and dosimetry methods, particularly in dynamic techniques, are being developed. At the same time, many oncology centers develop quality procedures, including pretreatment and online dose verification and proper patient tracking methods. This work aims to present the possibility of using portal dosimetry in the assessment of radiotherapy repeatability. The analysis was conducted on 74 cases treated with dynamic techniques. Transit dosimetry was made for each collision-free radiation beam. It allowed the comparison of summary fluence maps, obtained for fractions with the corresponding summary maps from all other treatment fractions. For evaluation of the compatibility in the fluence map pairs (6798), the gamma coefficient was calculated. The results were considered in four groups, depending on the used radiotherapy technique: stereotactic fractionated radiotherapy, breath-hold, free-breathing, and conventionally fractionated other cases. The chi2 or Fisher's exact test was made depending on the size of the analyzed set and also Mann-Whitney U-test was used to compare treatment repeatability of different techniques. The aim was to test whether the null hypothesis of error-free therapy was met. The patient is treated repeatedly if the P-value in all the fluence maps sets is higher than the level of 0.01. The best compatibility between treatment fractions was obtained for the stereotactic technique. The technique with breath-holding gave the lowest percentage of compliance of the analyzed fluence pairs. The results indicate that the repeatability of the treatment is associated with the radiotherapy technique. Treated volume location is also an essential factor found in the evaluation of treatment accuracy. The EPID device is a useful tool in assessing the repeatability of radiotherapy. The proposed method of fluence maps comparison also allows us to assess in which therapeutic session the patient was treated differently from the other fractions.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Imagens de Fantasmas , Radiometria , Dosagem Radioterapêutica
3.
Rep Pract Oncol Radiother ; 21(3): 168-73, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27601946

RESUMO

AIM: This work addresses the problem of treatment planning system commissioning by introducing a new method of determination of boundaries between high and low gradient in beam profile. BACKGROUND: The commissioning of a treatment planning system is a very important task in the radiation therapy. One of the main goals of this task is to compare two field profiles: measured and calculated. Applying points of 80% and 120% of nominal field size can lead to the incorrect determination of boundaries, especially for small field sizes. MATERIALS AND METHODS: The method that is based on the beam profile gradient allows for proper assignment of boundaries between high and low gradient regions even for small fields. TRS 430 recommendations for commissioning were used. RESULTS: The described method allows a separation between high and low gradient, because it directly uses the value of the gradient of a profile. For small fields, the boundaries determined by the new method allow a commissioning of a treatment planning system according to the TRS 430, while the point of 80% of nominal field size is already in the high gradient region. CONCLUSIONS: The method of determining the boundaries by using the beam profile gradient can be extremely helpful during the commissioning of the treatment planning system for Intensity Modulated Radiation Therapy or for other techniques which require very small field sizes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...