Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 616(7958): 836-842, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37020028

RESUMO

The origin recognition complex (ORC) is essential for initiation of eukaryotic chromosome replication as it loads the replicative helicase-the minichromosome maintenance (MCM) complex-at replication origins1. Replication origins display a stereotypic nucleosome organization with nucleosome depletion at ORC-binding sites and flanking arrays of regularly spaced nucleosomes2-4. However, how this nucleosome organization is established and whether this organization is required for replication remain unknown. Here, using genome-scale biochemical reconstitution with approximately 300 replication origins, we screened 17 purified chromatin factors from budding yeast and found that the ORC established nucleosome depletion over replication origins and flanking nucleosome arrays by orchestrating the chromatin remodellers INO80, ISW1a, ISW2 and Chd1. The functional importance of the nucleosome-organizing activity of the ORC was demonstrated by orc1 mutations that maintained classical MCM-loader activity but abrogated the array-generation activity of ORC. These mutations impaired replication through chromatin in vitro and were lethal in vivo. Our results establish that ORC, in addition to its canonical role as the MCM loader, has a second crucial function as a master regulator of nucleosome organization at the replication origin, a crucial prerequisite for efficient chromosome replication.


Assuntos
Cromatina , Complexo de Reconhecimento de Origem , Origem de Replicação , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Replicação do DNA , Nucleossomos/química , Nucleossomos/genética , Nucleossomos/metabolismo , Complexo de Reconhecimento de Origem/química , Complexo de Reconhecimento de Origem/genética , Complexo de Reconhecimento de Origem/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Nat Commun ; 13(1): 7014, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36400763

RESUMO

DNA replicates once per cell cycle. Interfering with the regulation of DNA replication initiation generates genome instability through over-replication and has been linked to early stages of cancer development. Here, we engineer genetic systems in budding yeast to induce unscheduled replication in a G1-like cell cycle state. Unscheduled G1 replication initiates at canonical S-phase origins. We quantifiy the composition of replisomes in G1- and S-phase and identified firing factors, polymerase α, and histone supply as factors that limit replication outside S-phase. G1 replication per se does not trigger cellular checkpoints. Subsequent replication during S-phase, however, results in over-replication and leads to chromosome breaks and chromosome-wide, strand-biased occurrence of RPA-bound single-stranded DNA, indicating head-to-tail replication collisions as a key mechanism generating genome instability upon G1 replication. Low-level, sporadic induction of G1 replication induces an identical response, indicating findings from synthetic systems are applicable to naturally occurring scenarios of unscheduled replication initiation.


Assuntos
Reparo do DNA , Instabilidade Genômica , Humanos , Instabilidade Genômica/genética , Replicação do DNA/genética , Fase S/genética , Ciclo Celular/genética
3.
Nat Commun ; 12(1): 5224, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34471130

RESUMO

The replication of chromosomes during S phase is critical for cellular and organismal function. Replicative stress can result in genome instability, which is a major driver of cancer. Yet how chromatin is made accessible during eukaryotic DNA synthesis is poorly understood. Here, we report the characterization of a chromatin remodeling enzyme-Yta7-entirely distinct from classical SNF2-ATPase family remodelers. Yta7 is a AAA+ -ATPase that assembles into ~1 MDa hexameric complexes capable of segregating histones from DNA. The Yta7 chromatin segregase promotes chromosome replication both in vivo and in vitro. Biochemical reconstitution experiments using purified proteins revealed that the enzymatic activity of Yta7 is regulated by S phase-forms of Cyclin-Dependent Kinase (S-CDK). S-CDK phosphorylation stimulates ATP hydrolysis by Yta7, promoting nucleosome disassembly and chromatin replication. Our results present a mechanism for how cells orchestrate chromatin dynamics in co-ordination with the cell cycle machinery to promote genome duplication during S phase.


Assuntos
Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Replicação do DNA/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/metabolismo , Pontos de Checagem do Ciclo Celular , Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/genética , DNA/metabolismo , Histonas/metabolismo , Humanos , Fosforilação , Fase S , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição
4.
Mol Cell ; 81(8): 1841-1853.e4, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33651987

RESUMO

In a first step of DNA double-strand break (DSB) repair by homologous recombination, DNA ends are resected such that single-stranded DNA (ssDNA) overhangs are generated. ssDNA is specifically bound by RPA and other factors, which constitutes a ssDNA-domain on damaged chromatin. The molecular organization of this ssDNA and the adjacent dsDNA domain is crucial during DSB signaling and repair. However, data regarding the presence of nucleosomes, the most basic chromatin components, in the ssDNA domain have been contradictory. Here, we use site-specific induction of DSBs and chromatin immunoprecipitation followed by strand-specific sequencing to analyze in vivo binding of key DSB repair and signaling proteins to either the ssDNA or dsDNA domain. In the case of nucleosomes, we show that recently proposed ssDNA nucleosomes are not a major, persistent species, but that nucleosome eviction and DNA end resection are intrinsically coupled. These results support a model of separated dsDNA-nucleosome and ssDNA-RPA domains during DSB repair.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação/métodos , Reparo do DNA/genética , DNA de Cadeia Simples/genética , DNA/genética , Nucleossomos/genética , Quebras de DNA de Cadeia Dupla , Recombinação Homóloga/genética
5.
Sci Rep ; 11(1): 4242, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33608586

RESUMO

Faithful genome duplication requires regulation of origin firing to determine loci, timing and efficiency of replisome generation. Established kinase targets for eukaryotic origin firing regulation are the Mcm2-7 helicase, Sld3/Treslin/TICRR and Sld2/RecQL4. We report that metazoan Sld7, MTBP (Mdm2 binding protein), is targeted by at least three kinase pathways. MTBP was phosphorylated at CDK consensus sites by cell cycle cyclin-dependent kinases (CDK) and Cdk8/19-cyclin C. Phospho-mimetic MTBP CDK site mutants, but not non-phosphorylatable mutants, promoted origin firing in human cells. MTBP was also phosphorylated at DNA damage checkpoint kinase consensus sites. Phospho-mimetic mutations at these sites inhibited MTBP's origin firing capability. Whilst expressing a non-phospho MTBP mutant was insufficient to relieve the suppression of origin firing upon DNA damage, the mutant induced a genome-wide increase of origin firing in unperturbed cells. Our work establishes MTBP as a regulation platform of metazoan origin firing.


Assuntos
Proteínas de Transporte/metabolismo , Replicação do DNA , Origem de Replicação , Animais , Sítios de Ligação , Linhagem Celular , Sequência Conservada , Quinases Ciclina-Dependentes/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Humanos , Fosforilação , Ligação Proteica , Processamento de Proteína Pós-Traducional
6.
Genes (Basel) ; 10(2)2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30700044

RESUMO

DNA replication differs from most other processes in biology in that any error will irreversibly change the nature of the cellular progeny. DNA replication initiation, therefore, is exquisitely controlled. Deregulation of this control can result in over-replication characterized by repeated initiation events at the same replication origin. Over-replication induces DNA damage and causes genomic instability. The principal mechanism counteracting over-replication in eukaryotes is a division of replication initiation into two steps-licensing and firing-which are temporally separated and occur at distinct cell cycle phases. Here, we review this temporal replication control with a specific focus on mechanisms ensuring the faultless transition between licensing and firing phases.


Assuntos
Pontos de Checagem do Ciclo Celular , Período de Replicação do DNA , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Humanos , Leveduras
7.
Sci Rep ; 7(1): 11650, 2017 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-28912563

RESUMO

Budding yeast Rad9, like its orthologs, controls two aspects of the cellular response to DNA double strand breaks (DSBs) - signalling of the DNA damage checkpoint and DNA end resection. Rad9 binds to damaged chromatin via modified nucleosomes independently of the cell cycle phase. Additionally, Rad9 engages in a cell cycle-regulated interaction with Dpb11 and the 9-1-1 clamp, generating a second pathway that recruits Rad9 to DNA damage sites. Binding to Dpb11 depends on specific S/TP phosphorylation sites of Rad9, which are modified by cyclin-dependent kinase (CDK). Here, we show that these sites additionally become phosphorylated upon DNA damage. We define the requirements for DNA damage-induced S/TP phosphorylation of Rad9 and show that it is independent of the cell cycle or CDK activity but requires prior recruitment of Rad9 to damaged chromatin, indicating that it is catalysed by a chromatin-bound kinase. The checkpoint kinases Mec1 and Tel1 are required for Rad9 S/TP phosphorylation, but their influence is likely indirect and involves phosphorylation of Rad9 at S/TQ sites. Notably, DNA damage-induced S/TP phosphorylation triggers Dpb11 binding to Rad9, but the DNA damage-induced Rad9-Dpb11 interaction is dispensable for recruitment to DNA damage sites, indicating that the Rad9-Dpb11 interaction functions beyond Rad9 recruitment.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular , Dano ao DNA , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Cromatina/genética , Cromatina/metabolismo , Fosforilação , Ligação Proteica , Proteínas Proto-Oncogênicas c-ets/metabolismo
8.
Cell Rep ; 17(2): 556-569, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27705801

RESUMO

Temporal separation of DNA replication initiation into licensing and firing phases ensures the precise duplication of the genome during each cell cycle. Cyclin-dependent kinase (CDK) is known to generate this separation by activating firing factors and at the same time inhibiting licensing factors but may not be sufficient to ensure robust separation at transitions between both phases. Here, we show that a temporal gap separates the inactivation of firing factors from the re-activation of licensing factors during mitosis in budding yeast. We find that gap size critically depends on phosphorylation-dependent degradation of the firing factor Sld2 mediated by CDK, DDK, Mck1, and Cdc5 kinases and the ubiquitin-ligases Dma1/2. Stable mutants of Sld2 minimize the gap and cause increased genome instability in an origin-dependent manner when combined with deregulation of other replication regulators or checkpoint mechanisms. Robust separation of licensing and firing phases therefore appears indispensable to safeguard genome stability.


Assuntos
Proteínas de Ciclo Celular/genética , Replicação do DNA/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/metabolismo , Genoma Fúngico , Instabilidade Genômica/genética , Complexo de Endopeptidases do Proteassoma/genética , Proteólise , Origem de Replicação/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA