Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 123(9): 097201, 2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31524473

RESUMO

Quantum materials that feature magnetic long-range order often reveal complex phase diagrams when localized electrons become mobile. In many materials magnetism is rapidly suppressed as electronic charges dissolve into the conduction band. In materials where magnetism persists, it is unclear how the magnetic properties are affected. Here we study the evolution of the magnetic structure in Nd_{1-x}Ce_{x}CoIn_{5} from the localized to the highly itinerant limit. We observe two magnetic ground states inside a heavy-fermion phase that are detached from unconventional superconductivity. The presence of two different magnetic phases provides evidence that increasing charge delocalization affects the magnetic interactions via anisotropic band hybridization.

2.
J Control Release ; 197: 131-7, 2015 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-25445697

RESUMO

Magnetic nanoparticles are highly desirable for biomedical research and treatment of cancer especially when combined with hyperthermia. The efficacy of nanoparticle-based therapies could be improved by generating radioactive nanoparticles with a convenient decay time and which simultaneously have the capability to be used for locally confined heating. The core-shell morphology of such novel nanoparticles presented in this work involves a polysilico-tungstate molecule of the polyoxometalate family as a precursor coating material, which transforms into an amorphous tungsten oxide coating upon annealing of the FePt core-shell nanoparticles. The content of tungsten atoms in the nanoparticle shell is neutron activated using cold neutrons at the Heinz Maier-Leibnitz (FRMII) neutron facility and thereby transformed into the radioisotope W-187. The sizeable natural abundance of 28% for the W-186 precursor isotope, a radiopharmaceutically advantageous gamma-beta ratio of γß≈30% and a range of approximately 1mm in biological tissue for the 1.3MeV ß-radiation are promising features of the nanoparticles' potential for cancer therapy. Moreover, a high temperature annealing treatment enhances the magnetic moment of nanoparticles in such a way that a magnetic heating effect of several degrees Celsius in liquid suspension - a prerequisite for hyperthermia treatment of cancer - was observed. A rise in temperature of approximately 3°C in aqueous suspension is shown for a moderate nanoparticle concentration of 0.5mg/ml after 15min in an 831kHz high-frequency alternating magnetic field of 250Gauss field strength (25mT). The biocompatibility based on a low cytotoxicity in the non-neutron-activated state in combination with the hydrophilic nature of the tungsten oxide shell makes the coated magnetic FePt nanoparticles ideal candidates for advanced radiopharmaceutical applications.


Assuntos
Materiais Biocompatíveis/química , Ferro/química , Nanopartículas Metálicas/química , Óxidos/química , Platina/química , Tungstênio/química , Animais , Apoptose/efeitos dos fármacos , Astrócitos/efeitos dos fármacos , Materiais Biocompatíveis/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Temperatura Alta , Ferro/farmacologia , Fenômenos Magnéticos , Nêutrons , Óxidos/farmacologia , Platina/farmacologia , Ratos , Tungstênio/farmacologia
3.
Proc Natl Acad Sci U S A ; 104(41): 16016-21, 2007 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-17901202

RESUMO

A carbon-rich black layer, dating to approximately 12.9 ka, has been previously identified at approximately 50 Clovis-age sites across North America and appears contemporaneous with the abrupt onset of Younger Dryas (YD) cooling. The in situ bones of extinct Pleistocene megafauna, along with Clovis tool assemblages, occur below this black layer but not within or above it. Causes for the extinctions, YD cooling, and termination of Clovis culture have long been controversial. In this paper, we provide evidence for an extraterrestrial (ET) impact event at approximately equal 12.9 ka, which we hypothesize caused abrupt environmental changes that contributed to YD cooling, major ecological reorganization, broad-scale extinctions, and rapid human behavioral shifts at the end of the Clovis Period. Clovis-age sites in North American are overlain by a thin, discrete layer with varying peak abundances of (i) magnetic grains with iridium, (ii) magnetic microspherules, (iii) charcoal, (iv) soot, (v) carbon spherules, (vi) glass-like carbon containing nanodiamonds, and (vii) fullerenes with ET helium, all of which are evidence for an ET impact and associated biomass burning at approximately 12.9 ka. This layer also extends throughout at least 15 Carolina Bays, which are unique, elliptical depressions, oriented to the northwest across the Atlantic Coastal Plain. We propose that one or more large, low-density ET objects exploded over northern North America, partially destabilizing the Laurentide Ice Sheet and triggering YD cooling. The shock wave, thermal pulse, and event-related environmental effects (e.g., extensive biomass burning and food limitations) contributed to end-Pleistocene megafaunal extinctions and adaptive shifts among PaleoAmericans in North America.


Assuntos
Planeta Terra , Extinção Biológica , Meteoroides , Animais , Carbono/análise , Clima , Ecossistema , Fenômenos Geológicos , Geologia , Humanos , Gelo/análise , Irídio/análise , Magnetismo , Modelos Teóricos , América do Norte , Fenômenos Físicos , Física , Solo/análise , Radioisótopos de Tálio/análise , Fatores de Tempo , Urânio/análise
4.
Appl Radiat Isot ; 53(4-5): 527-33, 2000 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11003487

RESUMO

A new catalogue of subthermal neutron-induced prompt gamma rays has been created for 79 elements, from hydrogen to uranium (including fission), on the basis of recent measurements at the Budapest guided-neutron PGAA facility. New energy values have been measured using 35Cl neutron-capture gamma rays, while the gamma-ray production cross-sections have been determined with respect to the 1H thermal capture cross-section. The elemental data have been compared with thermal neutron-capture data for individual nuclides from the Evaluated Nuclear Structure Data File, ENSDF, hence isotope identifications could be made. The catalogue contains elemental spectra and a table with nearly 7000 gamma rays with relative intensity over 1% of the strongest line. The average accuracy is about 0.08 keV for energies and about 5% for cross-sections in the whole energy range, from about 40 keV to 11 MeV.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA